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Abstract

Giant piston core MD99-2269 recovered 25 m of sediment in Huna¤floa¤all, a deep trough on the North Iceland
margin fronting the Iceland Sea, and the site of a shelf sediment drift. The rate of sediment accumulation is 2 m/kyr
(5 yr/cm); the core terminated in the Vedde tephra (V12 cal ka). The sediment was sampled at between 5 and 50 yr/
sample, including rock magnetic, grain-size, and sediment properties. Data reduction was carried out using principal
component analysis. Two PC axes for the 5-yr/sample magnetic data are strongly correlated with measures of
coercivity (ARM20 mT/ARM) and magnetic concentrations (kARM). In turn ARM20 mT/ARM is highly correlated
(negatively) with grain-size and the mean size of the sortable silt fraction. Analyses of the two PC axes with MTM
spectral methods indicate a series of significant (s 99%) periodicities at millennial to multidecadal scales, including
those at V200, 125, and 88 yr which are associated with solar variability. We also document a strong correlation
between the sediment magnetic properties and the D18O on benthic foraminifera on the North Iceland inner shelf. We
hypothesize that the links between variations in grain-size, magnetic concentrations, and solar forcing are controlled
by atmospheric and oceanographic changes linked to changes in the relative advection of Atlantic and polar waters
along the North Iceland margin. Today these changes are associated with variations in the deep convection in the
Greenland and Iceland Seas. The precise linkages are, however, presently elusive although a combination of coarser
sediments and low D

18O values define a Holocene thermal maximum between V8 and 6 cal ka.
@ 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The oceanography and climatology of the
waters on the North Iceland shelf (Fig. 1) have
been subject to abrupt change in the last few de-
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cades [1^4] including a dramatic decrease of 5‡C
associated with the 1969 Great Salinity Anomaly
(GSA). This change was so dramatic that Lamb
[5] used the ocean/land interactions associated
with this increased advection of Arctic waters as
an analog for conditions in the North Atlantic
during the Little Ice Age [6]. We present evidence
that supports the long-term sensitivity of this area
to changes in environmental conditions; we focus
on the association between changes in a few sim-
ple sediment magnetic parameters on the one
hand, and forcings associated with changes in
solar activity and the thermohaline circulation
(THC), on the other.
As part of the IMAGES V 1999 cruise in the

Nordic Seas we obtained core MD99-2269 (hence-
forth #69) from Huna¤£oa¤all, a large trough o¡ N/
NW Iceland (Fig. 1). The core site had been se-
lected on the basis of a previous cruise in 1997
[7,8]. This area has been surveyed hydrographi-
cally for several decades by the Marine Research
Institute, Iceland (www.hafro.is). The 1997 July
CTD data from cruise B997 [7] exhibited the
same basic water mass structure (Fig. 2) seen at
nearby sites (e.g. Siglunes transect, Fig. 1) and
fully described by Stefansson [9].

Giant piston core MD99-2269 was retrieved
from a shelf sediment body (SSB) which forms a
unit about 40 km long and ca. 25^30 m thick on
the £oor of Huna¤£oa¤all(Fig. 2). Landward and
seaward the sediment package thins and Holocene
sediment thicknesses are between 1 and 6 m.
Based on the limited seismic stratigraphy in Hu-
na¤£oa¤all this unit represents, nearly entirely, sedi-
ment accumulation during the Holocene [10],
hence it is tempting to associate its construction
with the development of the North Iceland Ir-
minger Current at the end of the Younger Dryas
cold event [11].
At the sea£oor, the SSB is bathed by cool Arc-

tic Intermediate Water [9] (Fig. 2). At the sea sur-
face, the site is intermediate in position with re-
spect to the warm and salty Atlantic Water (AtW)
carried around NW Iceland in the North Iceland
Irminger Current [9,12], and cold, fresh Arctic
Water (Fig. 2) being transported south and east
in the East Iceland Current. We attribute the con-
struction of the SSB to bottom currents [13,14]
however there are no measurements that we
have been able to ¢nd within Huna¤£oa¤all,
although Jo¤nsson [15] has measured long-term
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Fig. 1. Iceland within the North Atlantic (a) and site MD99-2269 o¡ North Iceland (b and c). The Siglunes section is a standard
hydrographic transect of the Marine Research Institute (www.hafro.is).
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current velocities on the adjoining bank of be-
tween 4 and 12 m/s.

2. Materials and methods

The core was measured on board by a GEO-
TEKTM MST logger (2 cm) and sediment color
determined by a spectrophotometer (5 cm). On
shore, archive halves were sampled for continuous
rock magnetic measurements using u-channels
(rigid u-shaped plastic liners with a square 2-cm
cross-section and a length of 1.5 m). Discrete sedi-
ment samples were taken at 5-cm intervals from
the working-half of the core for carbonate con-
tent, mass magnetic susceptibility. Grain-size was
measured at 10-cm intervals using a laser-sizing
system [16].
The u-channel samples were measured at the

Paleomagnetism Laboratory at the University of

California-Davis using a 2-G EnterprisesTM
model 755 cryogenic magnetometer [17^19] at
continuous 1-cm intervals. However, the upper
60 cm (V285 yr) was not sampled because it
was too soft. Smoothing of the measurements oc-
curs over a V4.5-cm increment associated with
the width at the half-height of the response func-
tion of the magnetometer pickup coils [17]. There-
fore, because each 1.5-m u-channel is measured
separately, the ends (top and bottom 4 cm) of
each u-channel were omitted from the ¢nal data
to remove ‘edge’ e¡ects caused by this smoothing.
The data loss (V5% of the total measured sec-
tions) was adjusted by interpolation between end
points using AnalySeries [20].
Various measurements and ratios of sediment

magnetic properties can be used to describe
changes in magnetic concentrations, mineralogy,
and grain-size [21^23]. Magnetic concentration is
measured both my magnetic susceptibility and by

Fig. 2. Potential temperature (‡C) and water masses along Huna¤£oa¤all (Fig. 1c), showing the location of the sediment drift body
and core sites.

EPSL 6617 5-5-03 Cyaan Magenta Geel Zwart

J.T. Andrews et al. / Earth and Planetary Science Letters 210 (2003) 453^465 455



anhysteretic remnant magnetization (kARM),
here we use the latter.
The stability of the ARM to alternating ¢eld

(AF) demagnetization expressed, for example, as
the ratio after 20 mT AF demagnetization to the
initial ARM re£ects the coercivity spectra of the
assemblage which for a magnetite-dominated min-
eralogy is mostly determined by magnetic grain-
size. Initial ARM intensities ranged from 0.4 to
s 1.5 A/m. Because of the extremely high concen-
trations of magnetic minerals, isothermal rema-
nent magnetization (IRM) was so high as to ex-
ceed the dynamic range of the instrument in some
intervals and these data are not used, but varia-
tions in IRM are frequently associated with
changes in magnetic mineralogy and the di¡erent
response of these minerals to di¡erent AF demag-
netization ¢elds. An initial data set of 10 magnetic
variables (see Section 3.1) was employed. Because
the sediments primarily represent erosion of the
Iceland basalts the sediments can be characterized
as having very high concentrations of magnetic
minerals and with magnetite (sensus lato) being
the dominant mineralogy. The major variations
in the sediment magnetic properties are thus re-
lated to changes in concentration and grain-size.
We have obtained 11 AMS radiocarbon dates

(Fig. 3A). The core is particularly well dated in
the last 5 cal ka. These have been calibrated to
sidereal years assuming an ocean reservoir correc-
tion of ca. 400 yr [24]. Additional age control is
provided by the identi¢cation of several Hekla
tephras that date between 846 (Hekla 1) and
6950 (Hekla 5) cal yr [25]. A prominent seismic
re£ector occurs at ca. 21 m below sealevel in the
SSB. In #69 this re£ector has been identi¢ed as
basaltic ash, with an age and geochemistry equiv-
alent to the Saksunarvatn tephra [26,27]. This
eruption has an estimated age in the Greenland
ice cores of 10.18W 0.06 cal ka [28] and a radio-
carbon age of 9 ka [29,30]. The date on the sur-
face sample is contaminated by bomb carbon in-
dicating that we have retrieved sediment 9 40 yr
old. The dates, including the age for the Saksu-
narvatn tephra, ¢t a straight line with the expres-
sion: age (cal yr BP) =322.8 W 92+4.9 W 0.07U
depth(cm) (r=0.998), with the W terms being
the one-sigma standard errors on the coe⁄cients.

We used this age/depth model to convert our sedi-
ment variables to time series. Because there is no
signi¢cant change in the rate of accumulation
then our time series are indeed equally spaced,
which is an important advantage when analyzing
the data [31]. The rate of sediment accumulation
is su⁄ciently high that we expect no signi¢cant
attenuation of multidecadal events [32]. The full
sediment data set has been submitted elsewhere
[33].

3. Results

3.1. Analysis of sediment magnetic data

Principal component analysis (PCA or EOF
analysis) [34] was used to simplify the 10 sediment
magnetic parameters and to extract the major or-
thogonal signals. The 10 parameters measured in-
cluded: kARM, a succession of ARM AF deter-
minations as a ratio of the original ARM value,
NRM J(0)/NRM J(60), IRM J(0)3IRM J(20),
and two back¢eld IRM measurements [22,23].
The ¢rst two PCA axes explain 44% and 35% of
the variability. Axis 1 is strongly associated with
the ratio ARM20 mT/ARM [35], whereas the sec-
ond axis is highly loaded with kARM (Fig. 3A), a
measure of magnetic concentration [21,22]. The
stability of a magnetic assemblage to AF demag-
netization is a function of mineralogy and grain-
size. The AF demagnetization behavior of a sam-
ple essentially re£ects the coercivity spectra of the
assemblage which for a magnetite-dominated min-
eralogy is mostly determined by magnetic grain-
size.
Indeed there is a very strong correlation be-

tween ARM20 mT/ARM and grain-size (phi-units)
of the sediment (Fig. 3B) with a synthetic corre-
lation [20] of r=0.54. The association between
PC1 and the mean size of the sortable silt fraction
[36^38] (not shown) is r=30.6. The ratio derived
from the intensity of a sample after 20 mT AF
demagnetization that had previously been given
an ARM normalized by its initial intensity,
though only representing a single point on the
demagnetization spectra, provides an estimate of
the ease (soft) or di⁄culty (hard) to demagnetize
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a down core sediment sequence. Higher values,
therefore, re£ect a coarser magnetite assemblage
and lower values a ¢ner assemblage. The large
peak at 10.2 cal ka (Fig. 3A) is associated with
deposition of the Saksunarvatn tephra and repre-
sents a prominent ‘non-climatic’ sediment event.
The mean size of the sortable silt fraction lies
within the range of analyses from the sediment
drifts south of Iceland [36,37], although the mag-
netic grain-size based on the demagnetization be-
havior of the ARM suggests that the #69 data are
signi¢cantly coarser (at least magnetically).
The second principal component, PC2

(VkARM), is inversely correlated with the total
carbonate content of the sediment (r=30.81) and
total organic carbon (TOC) (r=30.84) (Fig. 3C)
which suggests a dilution of the magnetic signal
with these diamagnetic minerals. However, the in-
crease in density with depth fromV0.4 g/cc to 0.9
g/cc is not a major control on kARM as the dis-
crete mass magnetic susceptibility measurements
(not shown) have an extremely strong correlation
with the volume kARM (r=0.95). Mass magnetic
susceptibility measurements eliminate the in£u-
ence of changes in density [22] but it is highly
correlated with kARM.
PC scores were calculated from the ¢rst two PC

axes and are evaluated in the following section.
We have argued [39,40] that total carbonate is an
index of marine productivity in these waters
[41,42]. At present, high productivity is associated
with the presence of AtW on the North Iceland
shelf, whereas incursions of cold Arctic/polar
waters (such as during the GSA of 1969 AD [4])
resulted in a strati¢ed water column, a marked
reduction of nutrients, and a decrease in produc-
tion in the photic zone [41]. Correlations between
changes in carbonate content and the calculated
temperatures at Summit, Greenland, are quite
striking (r=0.71) [40]. We are still developing
our isotope records from #69 [43], but there is a
striking similarity between the N18O record on the
epifaunal species Cassidulina lobotalus from B997-
330 on the inner North Iceland shelf [44] (Fig. 2)
and the ARM20 mT/ARM data from #69 (Fig.
3D). The correlation between the records is
high, r=0.64, with sampling resolutions at 5 and
100 yr. The B997-330 N

18O data match other re-
cords from the inner shelf [45,46].

3.2. Frequency-domain behavior

There is increased interest in the behavior of the
climate system at di¡erent frequencies [47]. In the
last decade, attention has focused on millennial-
scale periodicities [38,48,49], although varved and
other records are now allowing for decadal to
century evaluation of marine records [50]. It is
within this latter context that we evaluate our
data.
Previous work on lower resolution records (50^

100 yr/sample), on the North Iceland shelf cover-
ing the last 5 cal ka [40], suggested that the
carbonate time series hinted at recurring peri-
odicities. In our #69 magnetic data we have
substantially higher resolution (each magnetic
measurement integrates 20^25 yr (4^5 cm)) mak-
ing this one of the highest resolution Holocene
records available from a marine site in the north-
ern North Atlantic. We compute spectra based on
the widely used method of Mann and Lees [51].
This method employs a standard multiple-taper
spectral analysis to separate continuous and har-
monic components of the spectrum, but measures
the signi¢cance of these components based on a
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robust estimate of the red noise background in
the time series. The robust noise background is
estimated by an analytical ¢t of the theoretical
spectrum for a ¢rst-order autoregressive process
to a median smooth of the raw spectrum of the
time series, using the rules speci¢ed by Mann and
Lees [51] for selecting the optimal width of the
median smoothing window. The spectral analysis
is restricted to frequencies f6 0.02 cycle/yr (time-
scales longer than 50 years), since a break in the
red noise background (indicative of a signi¢cant
loss of recorded variance) is evident at higher fre-
quencies and is probably associated with the
above mentioned (see Section 2) integration of
the records.
We ¢rst computed the spectrum of the cores on

the ¢rst principal component, which we interpret
as a measure of changes in the bottom current
velocity along or across the SSB (we have insu⁄-
cient seismic coverage to reconstruct the sediment

architecture of this unit). Nine spectral peaks are
found to be signi¢cant above the 99% con¢dence
level relative to the null hypothesis of red noise
(Fig. 4). Five other peaks are signi¢cant above the
95% con¢dence level. Using three tapers with a
time^frequency bandwidth product of 2N, the
spectrum can be independently estimated at only
110 frequencies over the interval of interest. Thus,
only about one peak on average should exceed the
99% con¢dence level by chance alone, and the
majority of 99% signi¢cant spectral peaks are
thus likely to be indicative of real features of
the spectrum that are inconsistent with a red noise
null hypothesis.
The lowest-frequency peak, centered at a f=

0.0015^0.002 cycle/yr, corresponds to a signi¢cant
secular variation, reminiscent of a 5000^6000-year
timescale oscillation, that is apparent by visual
inspection of the PC1 time series. It is associated
with high PC1 scores (Fig. 3A) during the late to

Fig. 5. Evolutive spectrum of PC1 based on a 3000-year moving window, employing the same methodology as in Fig. 4. Time
axis corresponds to the center of the 3000-year moving window. The spectrum is shown as the log of the ratio of the spectrum
to the estimated red noise background. Only spectral features greater than the mean red noise level (i.e. positive values of the log
ratio) are shown, with signi¢cance directly proportional to the color scale shown [66].
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mid Holocene, low values during the mid to late
Holocene, and return to high values again at the
end of the Holocene. This long-term secular var-
iation is highly correlated with detrended v

14C
variations [24,52] (Fig. 6).
A cyclicity close to a 200-year period is also

found to be signi¢cant at above the 99% level
(note: the split peaks at 217 yr and 185 yr are
equivalent to a 200-yr period oscillation that is
amplitude-modulated at a lower frequency of
f=0.0008; interestingly, a peak at f=0.0008
(1250-year period), while not signi¢cant at the
99% level, is signi¢cant at roughly the 95% level.
This signal is consistent in timescale with the ‘Su-
ess’ wiggles in v

14C that have been detected at a
period of 208 yr in previous analyses of the v14C
data [53]).
In addition, there is a broad range of signi¢cant

peaks at centennial (170 yr, 140 yr, 125 yr, 118 yr)

and multidecadal (88 yr and 78 yr) timescales
(Fig. 4). The 125-yr peak has also been associated
with a harmonic of solar periodicities [54], where-
as the 88-yr peak corresponds to the well estab-
lished ‘Gleissberg’ cycle, the primary component
of solar variability associated with the ‘Maunder
Minimum’ period of low sunspot activity during
the 17th century. The associated lowering of solar
irradiance during this latter period has been re-
lated to cold temperatures in Europe through the
dynamical in£uences of a lowering of solar irra-
diance, which led to the predominance of the
North Atlantic Oscillation (NAO) pattern of at-
mospheric circulation [55]. Interestingly, solar
forcing at the 90-yr and V200-yr timescales has
also been detected in dust measurements from the
GISP2 central Greenland Ice core [56], and var-
iations in the strength of the circumpolar vortex
(in essence, variations in the NAO) have been
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implicated in explaining past variations in dust
concentrations in the GISP2 core [57]. These com-
parisons indicate a probable link between atmo-
spheric forcing and oceanographic variability on
the North Iceland shelf.
We speculate that the broader range of multi-

decadal and century-scale peaks evident in the
PC1 record (Fig. 4) is consistent with the interac-
tion between an intrinsic multidecadal mode of
variability in the North Atlantic [58] and a more
narrowband external solar forcing at timescales of
88 and 125 yr. Such interactions could be oceanic
in nature [59] or mediated through the response of
the extratropical atmospheric circulation to solar
forcing [55], with a consequent atmospheric-
forced response of the meridional overturning of
the North Atlantic ocean [60]. Intrinsic coupled
ocean-atmosphere dynamics acting on multideca-
dal timescales appear to give rise to a pattern
reminiscent of the ‘GSA’ [61], with its implied
enhanced transport through the Iceland shelf re-
gion, shortly following a previous more ‘NAO’-
like initial atmospheric state. This provides a pos-
sible linkage between an initial NAO atmospheric
forcing, and the inferred resulting transport var-
iations in the Irminger Current.
To examine possible changes in the nature of

preferred periodicities over time, we employed an
evolutive spectrum in a 3000-year moving window
through the time series. The evolutive spectrum
(Fig. 5) shows much of the multidecadal variabil-
ity (in a frequency range of 0.0125^0.017, periods
of 60^80 year) to be persistent through the early
Holocene, whereas the century-scale variability
(aside from a faint but persistent streak of var-
iance close to the V200-year period discussed
above) is strong only during late Holocene. It is
possible that the low-frequency 5000^6000-year
timescale variations modulate the amplitude of
higher-frequency variability. This modulation
could arise from the non-linear nature of the re-
sponse of convective overturning to surface forc-
ing. A decrease in the amplitude of century-scale
variability between 4000 and 5000 years BP is
correlated with a tendency towards weaker in-
ferred shelf transport at that time. This latter ten-
dency, in turn, appears to have been associated
with colder temperatures in Europe [38], which

suggests the predominance of the negative phase
of the NAO. Due to the positive relationship be-
tween the NAO and surface oceanic heat £ux over
the sub-polar North Atlantic (e.g. [60]), a de-
creased incidence of winter convective overturning
is expected during the negative phase of the NAO
although. Such a tendency for decreased convec-
tive overturning might also lead to a decrease in
variability in convective overturning (since con-
vective overturning cannot be reduced below the
‘no convection’ level). Such a mechanism would
be consistent, for example, with the lesser ampli-
tude century-scale variability in the mid Holo-
cene, though it does not provide a satisfactory
explanation for the long-term modulation in the
amplitude of multidecadal variability. It is likely
that long-term astronomical forcing over the
course of the Holocene also plays a role in this
regard.
We also computed the spectrum for PC2 which,

because of its association with carbonate and
TOC content, is interpreted as a signal of marine
productivity with variations associated with the
interplay between Atlantic and Arctic/polar water
mass incursion events, such as those associated
with the GSA. The spectrum is dominated by a
peak at zero frequency (corresponding to the
prominent trend observed in Fig. 3B), but signi¢-
cant variability at the multidecadal to century
timescales is also observed. Signi¢cant peaks are
found in frequency bands centered at roughly 50^
60-yr, 70^80-yr, and 100^120-year periods, both
in a spectral analysis of the entire record (not
shown), and consistently throughout the record
in an evolutive spectral analysis employing a
3000-year moving window. It is reasonable to in-
terpret these signals as the signature, in water
mass properties, of the same processes in£uencing
current strength discussed earlier.
To investigate possible links between our sedi-

mentary archives and a measure of the THC ac-
tivity, we examined the ‘goodness of ¢t’ between
our magnetic grain-size proxy (ARM20 mT/ARM)
at sites on the inner and mid North Iceland shelf,
and the detrended v

14C series [24,52]. The corre-
lation at the inner shelf site (B997-330, Fig. 1),
directly in£uenced by the North Iceland Irminger
Current, is a remarkable r=30.9, suggestive of a
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very close coupling between these two proxies
(Fig. 6A). At site MD99-2269 (Fig. 6B) the agree-
ment is substantial for the last 6 cal ka but is
weak for the previous interval. How far this rep-
resents an ‘interruption’ in source/transport/depo-
sitional processes caused by the massive Saksu-
narvatn tephra fallout [27,62] is unclear.

4. Conclusions

In examining the structure of the PC1 scores
associated with ARM20 mT/ARM (Fig. 3) it is
our contention that these changes re£ect varia-
tions in the grain-size and/or supply of sediments
associated with the accumulation of the SSB (Fig.
2). The results of our analysis need to be inter-
preted in the light of the basic threefold oceano-
graphic conditions on the North Iceland shelf
(Fig. 2) and how these di¡erent water masses
would have responded to di¡erent forcings, which
in turn led to the changes in sedimentary param-
eters (Fig. 3). The ¢rst two principal components
of the various sediment parameters largely re£ect
changes in mineralogy and grain-size (Fig. 3B),
and measures of net marine productivity (Fig.
3C). We interpret PC1 as indicative of systematic
variations in current transport across the surface
of the SSB (Fig. 2).
Present-day observations on the wind stress

curl in the Greenland and Iceland Seas and its
relationship to deep convection and the thickness
of the freshwater layer [63] indicate that low val-
ues are associated with a reduction or cessation in
convection and an increase in the freshwater
layer. We thus hypothesize that intervals of ¢ner
grain-size (Fig. 3B) are proxies for a decrease in
the wind stress curl, therefore the interval of
coarse sediment and low N

18O (Fig. 6A) re£ects
a prolonged interval of convection north of Ice-
land. Indeed, this interval coincides with an in-
crease in coccoliths associated with the North At-
lantic Drift in core 330 from the inner shelf [44]
(Fig. 1). There is no systematic correlation be-
tween the NAO winter index [64] and the timing
of low wind stress curl regimes over the Green-
land Sea north of Iceland. However, there is a
strong negative correlation between the wind

curl stress and the thickness of freshwater in
spring over the Iceland Sea, and over the last
40 yr negative NAO years are associated with
very low wind stress curl values across the Iceland
Sea [63].
The PC1 time series consists of a record that is

unlikely to have arisen from random climate noise
(Figs. 4 and 5). Statistically signi¢cant relation-
ships, moreover, are established between the in-
ferred oscillatory variations in subsurface ocean
circulation changes in the North Atlantic and in-
dependently documented variations in solar vari-
ability on multidecadal through multi-millennial
timescales. Previous evidence for signi¢cant multi-
decadal variability in the North Atlantic, and pos-
sible relationships to solar forcing, has been based
on analyses of annually resolved surface proxy
indicators, such as tree-rings, ice cores, corals,
and historical records (e.g. [58] and references
therein). We have presented here a new multide-
cadal marine data set from the northern North
Atlantic. Analysis of these data veri¢es a close
apparent longer-term relationship between multi-
decadal North Atlantic oceanographic variability
and solar forcing.
The ¢ndings presented here also complement

other previous evidence for signi¢cant relation-
ships between Holocene solar and surface ocean-
ographic variations (e.g. Fig. 6) at longer time-
scales, such as inferred millennial-scale changes
in drift ice [65] by establishing evidence of millen-
nial-scale oceanographic variations within the
subsurface structure of the ocean, and by clarify-
ing the signi¢cant timescales of variability based
on considerably better frequency control. Bond et
al. (see e.g. their supplementary ¢gure 3 [65])
found broad, moderately (90%) signi¢cant spec-
tral peaks in the frequency ranges 0.4^1.4 cycle/
kyr (700^2500 years), 1.9^2.5 cycles/kyr (400^530
year) and 4.3^4.7 cycles/kyr (210^230 years). Our
higher resolution analysis veri¢es such broad
peaks, but shows them often to be composed of
groups of more statistically signi¢cant, but more
narrowband variability. The ¢ne structure of
these narrowband signals corresponds with the
¢ne structure evident in long proxies for solar
variability.
The observations presented here should consti-
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tute a useful extended target for dynamical mod-
eling approaches [55,59] to understanding forced
patterns of climate variability during the Holo-
cene.
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