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ABSTRACT

This study uses a statistical downscaling method based on self-organizing maps (SOMs) to produce high-

resolution, downscaled precipitation estimates over the state of Pennsylvania in the mid-Atlantic region of the

United States. The SOMs approach derives a transfer function between large-scale mean atmospheric states

and local meteorological variables (daily point precipitation values) of interest. First, the SOM was trained

using seven coarsely resolved atmospheric variables from the National Centers for Environmental Prediction

(NCEP) reanalysis dataset to model observed daily precipitation data from 17 stations across Pennsylvania

for the period 1979–2005. Employing the same coarsely resolved variables from nine general circulation

model (GCM) simulations taken from the historical analysis of the Coupled Model Intercomparison Project,

phase 3 (CMIP3), the trained SOM was subsequently applied to simulate daily precipitation at the same 17

sites for the period 1961–2000. The SOM analysis indicates that the nine model simulations exhibit similar

synoptic-scale features to the (NCEP) observations over the 1979–2007 training interval. An analysis of the

sea level pressure signatures and the precipitation distribution corresponding to the trained SOM shows that it

is effective in differentiating characteristic synoptic circulation patterns and associated precipitation. The

downscaling approach provides a faithful reproduction of the observed probability distributions and temporal

characteristics of precipitation on both daily and monthly time scales. The downscaled precipitation field

shows significant improvement over the raw GCM precipitation fields with regard to observed average

monthly precipitation amounts, average monthly number of rainy days, and standard deviations of monthly

precipitation amounts, although certain caveats are noted.

1. Introduction

Recent climate research indicates the likelihood of

increasing precipitation extremes in a warmer climate

(e.g., Meehl et al. 2007). Indeed, such changes are already

apparent as the atmosphere has warmed over the past

century (Trenberth et al. 2007; Ning and Qian 2009). The

underlying physics of this overall response is relatively

well understood, involving basic factors such as those

described by the Clausius–Clapeyron equation, which

prescribes increased atmospheric water vapor mixing

ratios with warming tropospheric temperatures. There

is reason to believe that current-generation atmosphere–

ocean general circulation models (AOGCMs) provide

credible estimates of changes in the hydrological cycle

at continental and larger spatial scales (Randall et al.

2007). However, the resolutions of GCMs are usually too

coarse to provide detailed regional information about

climate change on local scales, and the parameterizations
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of subgrid-scale processes, such as precipitation, also re-

sult in some degree of uncertainty in the grid-scale pro-

jections. Understanding and projecting changes in the

distribution of precipitation at regional spatial and

short temporal scales most relevant for decision making

and as input into hydrological models, therefore, re-

quires a more nuanced approach (Wagener et al. 2010).

Downscaling has become a popular technique for ex-

ploring the relationship between local-scale climate change

and synoptic-scale climate forcing (Hewitson and Crane

1992b,c, 1996, 2002; Wood et al. 2002). For example,

Hewitson and Crane (1992a) use a technique based on an

artificial neural network to demonstrate that the local

precipitation variability in southern Mexico resulted from

changes in the near-surface and 500-hPa circulation fields.

Wilby and Wigley (1997) describe four categories of

downscaling techniques: regression methods; weather-

pattern-based approaches; stochastic weather generators,

which belong to statistical downscaling; and limited-area

modeling, generally referred to as dynamic downscaling.

Downscaling techniques have continued to evolve and

their use has matured since the Intergovernmental Panel

on Climate Change (IPCC) Third Assessment Report

(Houghton et al. 2001). In the fourth IPCC report,

Christensen et al. (2007) evaluate many downscaling

methods over different regions of the world, and they con-

clude that downscaling is an effective way to enhance the

regional climate details of the AOGCM-simulated data.

With respect to the mid-Atlantic and Northeast re-

gions of the United States, Crane and Hewitson (1998)

apply artificial neural networks and find that anthropo-

genic greenhouse gas forcing leads to changes in storm-

track and humidity fields over eastern North America,

which, in an early version of the Goddard Institute for

Space Studies (GISS) model, resulted in a substantial

increase in spring and summer rainfall. More recent high-

resolution projections of future climate change across

the northeastern United States, using IPCC emission

scenarios combined with both statistical and dynamical

downscaling suggest temperature increases, especially at

higher latitudes and inland, as well as potential precipi-

tation pattern changes (Hayhoe et al. 2006). According

to Christensen et al. (2007), annual mean precipitation is

very likely to increase in Canada and the northeastern

United States, and it is likely to decrease in the south-

western United States. They also indicate that over the

mid-Atlantic region, most GCMs agree on increases of

annual and winter mean precipitation, while for summer

only about half of the GCMs predict increases. Climate

change impacts over the mid-Atlantic region identified

in these studies are influenced by several key processes,

including midlatitude cyclones, ENSO, and the North

Atlantic Oscillation (NAO)/Atlantic Oscillation (AO).

The ridge and valley province of the Appalachian Moun-

tains dominate a large part of Pennsylvania, and statistical

downscaling has proven to perform well at downscaling

local temperature and precipitation in similar regions of

high topographic variability (Benestad 2005; Hanssen-

Bauer et al. 2005; Hewitson and Crane 2006).

In many cases it is necessary to propagate climate

change projections of meteorological variables, such as

precipitation, through hydrological models to yield the

variables of interest (e.g., streamflow or soil moisture).

Hydrologic models have a much finer resolution than

GCMs, and the GCMs’ output generally has to be down-

scaled before becoming useful for these models. Wood

et al. (2004) use three different statistical downscaling

methods: linear interpolation, spatial disaggregation, and

bias correction and spatial disaggregation (BCSD). Each

of these methods are applied to both the Parallel Climate

Model (PCM) and regional climate model (RCM) to

downscale climate model output to drive the Variable

Infiltration Capacity (VIC) model at a 1/88 spatial reso-

lution (Liang et al. 1996, 1999). They compared the

results from the hydrological model driven by the down-

scaled data from the three other approaches, and they

found that the BCSD methods successfully reproduce the

main features of the observed hydrometeorology from

the retrospective climate. Maurer (2007) also shows that

winter streamflow over California will increase, while late

spring and summer flow will decrease based on the VIC

model driven by downscaled climate change projections

from 11 GCMs under both the higher-emission Special

Report on Emissions Scenarios (SRES) A2 scenario and

lower-emission SRES B1 scenario.

Self-organizing maps (SOMs) represent a nonlinear

technique that supports the analysis of variability in

large multivariate and multidimensional datasets through

the derivation of a spatially organized set of generalized

patterns of variability from the data (Reusch et al. 2007).

Cavazos (1999) uses SOMs to examine the relationships

between large-scale circulation–humidity fields and local

daily precipitation events in northeastern Mexico and

southeastern Texas. SOMs are applied to combine the

precipitation records of individual stations into a re-

gional dataset by Crane and Hewitson (2003). Hewitson

and Crane (2006) use SOMs to downscale synoptically

controlled daily precipitation over South Africa, while

Reusch and Alley (2007) find that SOM-based patterns

concisely capture the spatial and temporal variability in

monthly Antarctic sea ice edge position data through

the examination of area anomalies of Antarctic sea ice

coverage.

In this paper, we use the SOM-based downscaling

methodology introduced by Hewitson and Crane (2006)

to reproduce historical daily precipitation observations
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for stations over Pennsylvania (United States). We eval-

uate how well GCMs reproduce the observed synoptic-

scale atmospheric conditions and assess their usefulness

in projecting current precipitation variability over the

region.

2. Data and methodology

a. Data

In this study, we use three sets of data for the down-

scaling procedure: National Centers for Environmental

Prediction (NCEP) reanalysis of daily gridded atmo-

spheric data, observed daily station precipitation data,

and GCM daily gridded atmospheric data. The daily

gridded atmospheric data are constructed from 6-hourly

NCEP reanalysis data from 1979 to 2007 with a resolu-

tion of 2.58 3 2.58.

The SOM procedure uses seven variables: u and y

components of the wind at 10 m and 700 hPa, respectively;

relative humidity at 850 hPa; air temperature anomaly

at 10 m; and the lapse rate of temperature from 850 to

500 hPa. All seven variables are physically related to the

local precipitation. The u and y components of the wind

determine low-level convergence and divergence, while

water vapor content of the lower atmosphere relates to

relative humidity and surface temperature. The 850–

500-hPa lapse rate determines whether the initial con-

ditions for convection are met.

TABLE 1. Locations and elevations of the 17 stations over Pennsyl-

vania. Here and in subsequent tables, ID indicates identifier number.

Station ID Station name

Lat

(8N)

Lon

(8W)

Elev

(m)

360106 Allentown 40.66 275.44 118

363054 Chambersburg 39.94 277.64 195

363028 Franklin 41.39 279.82 302

363526 Greenville 41.42 280.37 344

363699 Harrisburg 40.22 276.85 103

364385 Johnstown 40.34 278.92 370

365915 Montrose 41.84 275.87 475

366233 New Castle 41.02 280.37 251

366689 Palmerton 40.80 275.62 125

367477 Ridgway 41.42 278.75 414

368449 State College 40.80 277.87 357

368596 Stroudsburg 41.01 275.19 146

368905 Towanda 41.76 276.42 229

369050 Uniontown 39.92 279.72 291

369298 Warren 41.86 279.16 369

369464 West Chester 39.97 274.64 137

369933 York 39.92 276.75 119

FIG. 1. The SOMs preprocessing (triangle: target location).
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Detailed comparisons (B. C. Hewitson 2009, personal

communication) of the present SOM-based statistical

downscaling to the application of climate regimes in

Africa have shown that the additional use of specific

humidity makes little difference to predictions of rain-

fall during the historical period but leads to predictions

of greater increases in rainfall in response to future an-

thropogenic warming. Comparisons with dynamically

downscaled estimates based on regional climate models

suggest that these larger precipitation increases repre-

sent overestimates. The effects of using the additional

humidity parameter will be discussed later in the context

of our own downscaling results.

We limit our analysis to the post-1979 NCEP data

when satellite observations improve the quality and

climatological continuity of the product (Sturaro 2003;

Tennant 2004). The precipitation data for Pennsylvania

come from 17 stations for the period 1961–2005. The

names, locations, and elevations of the stations are given in

Table 1. The GCM circulation data from 1961 to 2000 are

taken from the twentieth-century simulation using histor-

ical greenhouse gas concentrations [Twentieth-Century

Climate in Coupled Model (20C3M) scenario] of the

World Climate Research Programme (WCRP) Coupled

Model Intercomparison Project, phase 3 (CMIP3), for nine

different models: Canadian Centre for Climate Model-

ling and Analysis (CCCma) Coupled General Circula-

tion Model, version 3.1 (CGCM3.1); Centre National de

Recherches Météorologiques Coupled Global Climate

Model, version 3 (CNRM-CM3); Commonwealth Sci-

entific and Industrial Research Organisation, Mark 3.0

(CSIRO Mk3.0); Geophysical Fluid Dynamics Labo-

ratory Climate Model, version 2.0 (GFDL CM2.0);

Goddard Institute for Space Studies Model E-R (GISS-

ER); L’Institut Pierre-Simon Laplace Coupled Model,

version 4 (IPSL CM4); Meteorological Institute of the

University of Bonn, ECHO-G Model (MIUBECHOG);

Max Planck Institute (MPI) ECHAM5; and Meteoro-

logical Research Institute Coupled General Circulation

Model, version 2.3.2a (MRI CGCM2.3.2a). The data and

descriptions of the GCMs can be found at the WCRP

CMIP3 Multi-Model Data Web site (https://esg.llnl.

gov:8443/index.jsp). The variables simulated by the GCM

data are the same as those for the NCEP data. In the

FIG. 2. SLP distribution corresponding with 99 SOM nodes (hPa).
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assessment of the downscaled product, we also use daily

NCEP sea level pressure (SLP) from 1979 to 2007, and

the precipitation rate of the nine GCMs from 1961 to

2000.

b. The downscaling procedure

The first step in the downscaling procedure used here

involves training the SOMs. SOMs are analogous to a

fuzzy-clustering algorithm and are usually used to visu-

alize and characterize multivariate data distributions

(Kohonen 1989, 1995). A SOM is typically depicted as

a two-dimensional array of nodes, where each node is

described by a vector representing the average of the

surrounding points in the original data space. For an

input dataset that is described by a matrix of n variable

data points and m observations, each node in the SOM

is described by a reference vector having length n. The

initial step in the SOM training involves assigning ran-

dom values to each node reference vector and then

comparing the data record with each node vector. The

reference vector that most closely matches the data

vector is defined as the ‘‘winning’’ node. Then, the ref-

erence vector of the winning node is updated slightly

toward the direction of the input data by a factor termed

the ‘‘learning rate.’’ All the surrounding nodes are also

updated in the direction of the input data by a smaller

learning rate. The entire process is then repeated for

multiple iterations until the differences between itera-

tions are smaller than a selected threshold value. This

training procedure is described in detail in Crane and

Hewitson (2003) and illustrated in Fig. 1 therein.

In our application, a separate SOM with 9 3 11 5 99

nodes is trained for each station, with each node rep-

resenting a characteristic atmospheric state. The choice

of SOM size is ultimately subjective—fewer nodes in-

creases generalization, while an increased number of

nodes results in too few days being mapped to each node

to derive a representative rainfall distribution function.

FIG. 3. Frequency distributions across the SOM nodes for atmospheric circulation from (a)

NCEP and models (b) CNRM, (c) CSIRO, (d) GFDL, (e) IPSL, and (f) MPI centered on

40.08N, 76.58W (%).

15 JANUARY 2012 N I N G E T A L . 513



However, statistical validation experiments, as described

later, can be used to assess the sensitivity of the results

to this precise choice.

Prior to the training step, the study area was divided

into a grid with a resolution of 0.5 degrees (Fig. 1a), and

for any given target station, the nearest cell is identified

(Fig. 1b). For example, the grid cell centered on 40.08N,

76.58W is the nearest cell for Harrisburg (40.228N,

76.858W). For each of the seven variables, 19 hexagonal

grids are created, with the grid cell being in the center.

For each hexagonal grid, four NCEP data points sur-

rounding each of the six triangular centroids are ex-

tracted and regridded to the centroid through a weight

inversely proportional to the distance between the

NCEP data point and the hexagonal centroid. The value

over each of the 19 hexagonal grids is then calculated

through averaging the values of six triangular centroids

(Fig. 1c). Finally, all the NCEP data are separately

standardized. Thus, for each node, we use seven vari-

ables, creating a 19 3 7-member vector to describe each

day’s atmospheric state around the station.

For each station, we compare the observed daily at-

mospheric data to the SOM nodes and map each day to

one particular node. For each SOM node, we take all

the days that map to that particular node and then rank

the precipitation on those days from low to high. A

spline is fit to the ranked precipitation data to define

a continuous cumulative distribution function (CDF)

FIG. 4. Average quantization error distributions across the SOM nodes for atmospheric

circulation from (a) NCEP and models (b) CNRM, (c) CSIRO, (d) GFDL, (e) IPSL, and (f)

MPI centered on 40.08N, 76.58W.
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of the node’s rainfall. This procedure is repeated for

all the nodes in the SOM and then for all the stations.

To downscale the precipitation for a given station

over a particular period, we first compare the circula-

tion data (either from the GCMs or from the observa-

tions) to the SOM, associating each day with a node.

For each day, a random number generator is used to

select a value of precipitation from the CDF for the node

to which the day is mapped. The procedure is repeated

many times to produce an ensemble of time series for

each station, any one of which can be considered a rep-

resentative sample of the distribution characterizing the

downscaled dataset. We chose to produce ensembles

consisting of 1500 realizations for the purpose of our

downscaling applications.

3. Results

There are a large number of empirical downscaling

methodologies currently being applied to regional cli-

mate datasets. However, many simply describe the ap-

plication of a technique to a single region using one or

maybe two GCMs to drive the downscaling and to com-

pare the results to observed monthly rainfall. Here we

attempt to go further by downscaling all available GCMs

from the CMIP3 archive that have the required daily

FIG. 5. The (a) average and (b) standard deviation of the averaged quantization errors across

the SOM nodes for NCEP and nine GCMs’ circulation data centered on 40.08N, 76.58W.

FIG. 6. The average values of the averaged quantization errors over all the SOM nodes for

NCEP and nine GCMs’ circulation data centered on 40.08N, 76.58W.
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parameters. Furthermore, we focus on validation using

a variety of measures to achieve a more robust down-

scaling that also reflects the uncertainty resulting from

the variations in the original GCM simulations.

a. Synoptic controls on precipitation

The following basic assumptions are behind our down-

scaling approach: (i) precipitation at each of the stations

will vary as a function of the atmospheric state, (ii) the

NCEP variables can adequately describe that state, and

(iii) they are to some degree a function of the larger-

scale atmospheric state. One appropriate diagnostic of

that state is the SLP field. This motivates as an internal

consistency check on the validity of our underlying as-

sumptions, assessing how well the nodes of the trained

SOM reflect differences in the synoptic state of the at-

mosphere as indicated by their projection onto the SLP

field—a field that was not used to define (train) the SOM.

The projection of the 99 SOM nodes onto the SLP field

for the Harrisburg (40.08N, 76.58W) site is shown in Fig. 2.

This site is chosen because of its central location, but results

are similar for all sites. Each projection of a given node is

defined by the average of the SLP field over all days

mapped to that node. The figure demonstrates that, al-

though the SLP data are not directly used in training the

SOM, the SLP distributions are clearly well differentiated

by the SOM nodes: similar patterns locate close to each

other in the SOM space, while different patterns locate

farther apart. High pressure dominates the nodes to the top

and left of the SOM space, while low pressure dominates in

the bottom right, with transitional nodes in between.

b. GCM validation

A basic method for evaluating a particular GCM’s

usefulness in assessing climate change is to test the

model’s ability to simulate present climate (including

variability and extremes). The differences between sim-

ulations and observations should be considered in-

significant if they are within unpredictable internal

variability, have expected differences in forcing, or have

uncertainties in the observed fields (Randall et al. 2007).

In the present case, we can compare the simulations to

FIG. 7. The CDFs of daily precipitation values corresponding to 99 SOM nodes (x-axis; mm).
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observations (NCEP) by mapping the GCM fields to the

trained SOM and comparing the results with the NCEP

mapping, providing the means for assessing how well

the various GCMs reproduce the atmospheric states

used to differentiate characteristic rainfall distributions.

As an example, we still consider the Harrisburg

(40.08N, 76.58W) site (Fig. 3). In Fig. 3, each square rep-

resents one node in the SOM. The frequency of a node is

equal to the number of the days mapped to this node as

a percentage of the number of all the days used in the SOM

training. Figure 3a shows the frequency of days mapped

to each of the 99 SOM nodes for the NCEP data for

the period 1979–2007, while Figs. 3b–f shows the mapping

of five GCMs for the period 1961–2000: CNRM, CSIRO,

GFDL, IPSL, and MRI. These five models span the

range of quantization errors (discussed below) encoun-

tered among the full set of GCMs analyzed. Mapping the

GCM data onto the SOM trained by the NCEP data shows

how well the GCMs reproduce the atmospheric states

used to differentiate characteristic rainfall distributions.

The NCEP frequency distribution (Fig. 3a) shows that

the frequencies are fairly uniformly distributed across all

the nodes, with slightly larger frequencies located at the

edges and corners. The GCMs also show a fairly uniform

distribution across all nodes, although several of the

models show centers of higher frequencies that are not

present in the NCEP distributions. CSIRO Mk3.0 and

IPSL CM 4 in particular, the two models with the largest

quantization errors, show a concentration of variance

in fewer nodes. These centers of higher frequencies in

some of the GCM mappings suggest slightly reduced

variance in the model fields, but the distribution across

the nodes shows that the models do recreate the atmo-

spheric states revealed in the NCEP data, indicating that

the GCMs produce realistic synoptic-scale patterns and

variability across the region.

The average quantization errors (Fig. 4) measure how

well the NCEP or five GCMs circulation fields map onto

the available nodes. The quantization error is the mean

difference between the node vector and each of the days

that map to the node. It shows how closely the days are

clustered in the data space or, alternatively, how much

of the data space is represented by that node. By analogy

with cluster analysis, the quantization error represents

the within-group variability. The quantization error of

one day is defined as the smallest Euclidean distance

between the input vector and its best-matching node

when mapping that day to one of the SOM nodes, and it

is the measure of how the node reference vector repre-

sents the mapped atmospheric vector. Figure 4a shows

that the quantization errors over the left side of the

SOM are larger than those over the center and right side,

indicating that the variances are larger for the synoptic

states dominated by high pressure systems (Fig. 2).

The average quantization error distributions of the

GCMs (Figs. 4b–f) are very similar to the corresponding

distribution for the NCEP fields, although with slightly

higher error values in some cases. The blank node (7, 8)

in the distribution of model CSIRO Mk3.0 (Fig. 4c)

indicates that no single day maps to that node. This

FIG. 8. The probability distributions of observed (black) and downscaled (gray) daily

precipitation over 17 stations in Pennsylvania during the period 1979–2005.

15 JANUARY 2012 N I N G E T A L . 517



observation suggests that although the GCMs may have

reduced dimensionality compared to the observed data,

there is, in some cases, greater variability within the

synoptic states mapped to each node.

Recall that in the training of the SOM, each daily

synoptic circulation state is treated as a location in the

original multidimensional state space, and that similar

circulation states locate close to each other, while those

states with large differences locate farther apart. Com-

bining Figs. 3 and 4, it can be concluded that the total

volume in state space of the NCEP data is larger than the

volume of the GCMs’ state spaces; however, around

separate characteristic synoptic atmospheric states, the

distance among the daily synoptic states in each of the

GCMs is usually larger than the distance in NCEP

state space.

The average values and standard deviations of the

averaged quantization errors through NCEP and nine

GCMs are given in Fig. 5. The pattern of average values

of the averaged quantization errors is similar to the

pattern of averaged quantization errors seen with the

NCEP data, with larger errors over the left-hand side of

the SOM and smaller errors over the right-hand side

(Fig. 5a). The additional four GCMs not shown in Fig. 4

thus have similar quantization error distributions to the

five GCMs that are shown. It can be concluded that

the distribution of variance of the synoptic circulation

patterns in the GCMs are broadly similar to those for

the NCEP data. The standard deviations of the mean

quantization errors (Fig. 5b) show that the variability is

almost uniform over all the nodes. The average of all

GCMs gives a close match to the observations (NCEP).

This was also demonstrated for the Pennsylvania region

by Shortle et al. (2009), who show that the present-day

mean temperature and rainfall simulations for all GCMs

in the CMIP3 archive provide a closer match to the

observations than any individual model.

As a simple measure of GCM performance in repro-

ducing the observed atmospheric states, we average all

the mean quantization errors over the 99 nodes in-

dividually for the NCEP data and for each of the GCMs

(Fig. 6). The average error for the NCEP data is about 7,

and the average error from most of the GCMs is also

close to 7, with slightly larger errors from models

CSIRO Mk3.0, and IPSL CM4. This suggests that

overall these two models are slightly less accurate in

FIG. 9. Observed (blue) and downscaled (red) monthly precipitation amount time series for period 1979–2005 over

stations (a) Allentown, (b) Harrisburg, and (c) Towanda (mm).
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reproducing the observed distribution of synoptic-scale

atmospheric states compared to the other seven models.

Although it does not necessarily follow that the accuracy

with which a particular GCM is able to simulate the

present climate translates directly into its ability to

project the future, using the inverse difference between

the GCM and the NCEP quantization errors would be

one possible approach to weighting the GCM output

when looking at projected changes for future climates

over the region based on a multimodel ensemble (e.g.,

the CMIP3 future climate change projections).

c. The downscaled precipitation

Figure 7 shows the calculated CDFs of daily pre-

cipitation values corresponding to the 99 SOM nodes.

For the nodes located in regions of the SOM dominated

by high surface pressure, most of the CDFs show low or

zero precipitation amounts. As would be expected, for

nodes located in regions of the SOM dominated by low

surface pressure and certain transitional surface pres-

sure patterns, precipitation amounts are much higher.

The differences in the CDFs across the SOM indicate

TABLE 2. Ratio of mean-square errors (MSEs) (relative to the observed daily precipitation values) using mean downscaled estimates and

climatological mean values.

Station Spring Summer Autumn Winter Annual

Allentown 0.72 0.90 0.77 0.70 0.78

Chambersburg 0.77 0.87 0.78 0.72 0.78

Franklin 0.82 0.88 0.83 0.79 0.84

Greenville 0.82 0.85 0.82 0.81 0.83

Harrisburg 0.75 0.91 0.76 0.71 0.78

Johnstown 0.79 0.88 0.81 0.84 0.84

Montrose 0.75 0.86 0.78 0.81 0.79

New Castle 0.83 0.88 0.86 0.80 0.85

Palmerton 0.78 0.89 0.78 0.70 0.80

Ridgway 0.81 0.86 0.81 0.79 0.83

State College 0.85 0.86 0.81 0.80 0.83

Stroudsburg 0.70 0.86 0.73 0.70 0.74

Towanda 0.81 0.87 0.81 0.81 0.82

Uniontown 0.83 0.88 0.78 0.84 0.84

Warren 0.80 0.85 0.81 0.80 0.82

West Chester 0.77 0.85 0.80 0.78 0.80

York 0.71 0.87 0.74 0.72 0.76

Avg 0.78 0.87 0.79 0.77 0.81

95% CI (0.780, 0.788) (0.870, 0.873) (0.791, 0.796) (0.769, 0.776) (0.806, 0.811)

TABLE 3. Ratio of widths (as defined by interquartile range) of downscaled NCEP vs observed climatological precipitation distribution

(days with nonzero precipitation only).

Station Spring Summer Autumn Winter Annual

Allentown 1.35 0.46 0.89 0.80 0.91

Chambersburg 1.00 0.38 0.79 0.58 0.73

Franklin 0.77 0.41 0.66 0.67 0.68

Greenville 1.08 0.44 0.76 0.76 0.76

Harrisburg 1.07 0.29 0.79 0.79 0.82

Johnstown 0.91 0.51 0.87 0.94 0.80

Montrose 1.02 0.57 0.82 0.82 0.87

New Castle 0.89 0.37 0.75 0.67 0.66

Palmerton 1.12 0.31 0.74 0.61 0.71

Ridgway 0.85 0.53 0.69 0.73 0.75

State College 0.82 0.40 0.76 0.63 0.70

Stroudsburg 1.50 0.59 0.90 0.68 0.92

Towanda 0.97 0.42 0.67 0.53 0.67

Uniontown 1.10 0.47 0.77 0.72 0.82

Warren 0.92 0.50 0.75 0.95 0.79

West Chester 1.14 0.60 0.71 0.53 0.80

York 1.02 0.58 0.99 0.63 0.84

Avg 1.03 0.46 0.78 0.71 0.78

95% CI (1.012, 1.045) (0.452, 0.470) (0.776, 0.791) (0.692, 0.718) (0.768, 0.783)
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that the SOM categorization of atmospheric conditions

does allow for substantial differentiation between dif-

ferent precipitation states and that these differences

make physical sense in the context of the synoptic-scale

circulation.

The previous discussion clearly demonstrates that the

SOM characterization of atmospheric states captures

the synoptic variability, that the different atmospheric

states (represented by the SOM nodes) have different

precipitation characteristics, and that the GCMs exhibit

the same atmospheric states and synoptic variability.

The final step in the validation procedure is to examine

whether the trained SOM can be used to generate real-

istic precipitation time series that have the same magni-

tude and frequency characteristics as the observed data.

The SOM approach to downscaling precipitation

acknowledges that similar atmospheric conditions

can result in different observed precipitation amounts.

By randomly selecting from the rainfall CDF for each

node, the approach captures some of this stochastic

variability. Because the downscaling is a simplification

of reality, and because of its stochastic element, any in-

dividual recreation of the precipitation represents only

one possible realization of the precipitation regime,

which should match in its fundamental statistical attri-

butes, the observed precipitation, while not necessarily

matching the observed time series on a day-to-day basis.

To be a valid and useful representation of actual pre-

cipitation, the downscaling needs to match the charac-

teristics needed for, for example, hydrologic modeling;

that is, the downscaled precipitation should exhibit the

same monthly and seasonal precipitation amounts, the

same day-to-day variability, and the same number of rain

days per month.

In some respects, validation is simply a matter of

examining these characteristic statistics and assessing

whether the results are good enough for a particular

application. ‘‘Good enough,’’ of course, is a subjective

decision that depends on the particular application.

In this case, and to demonstrate that the downscaling

may have broad application, we also ask, does the

downscaling give a better result than just using clima-

tology? And, is the downscaling a significant improve-

ment over using the nearest GCM gridcell data? We

seek to demonstrate that the downscaled data are a close

match to the observations, and that the downscaling

gives an appreciable improvement over using the GCM

precipitation field directly.

The first step in validating statistical downscaling is to

compare the statistical properties of the downscaled

time series generated by the reanalysis fields with those

of the corresponding observations. Figure 8 compares

TABLE 4. Comparisons between observed and NCEP downscaled average monthly precipitation amounts, average monthly number of

rainy days, and standard deviations of monthly precipitation over the 17 stations during the period 1979–2005.

Station ID OAa DAb ONc DNd OSDe DSDf

Allentown 101.49 96.73 9.61 9.69 55.96 57.75

Chambersburg 93.78 87.08 9.37 9.13 49.47 46.27

Franklin 103.76 101.82 11.87 12.23 46.93 48.75

Greenville 98.03 94.34 12.38 12.31 44.27 42.31

Harrisburg 90.63 87.51 9.77 9.67 50.57 46.81

Johnstown 105.91 103.28 12.71 12.71 50.92 48.01

Montrose 110.56 106.65 12.36 12.67 53.58 52.62

New Castle 86.09 84.72 10.88 11.02 44.16 45.62

Palmerton 91.99 87.79 8.02 8.19 55.10 56.36

Ridgway 101.91 98.97 12.40 12.23 44.81 44.51

State College 94.72 91.59 10.99 11.03 49.73 47.02

Stroudsburg 113.49 108.23 10.36 10.29 62.49 58.95

Towanda 80.26 79.11 9.78 9.69 43.58 43.78

Uniontown 97.52 95.38 11.80 11.91 44.97 43.74

Warren 107.59 105.34 13.37 13.26 44.35 45.75

West Chester 106.37 100.52 9.50 9.41 59.03 54.68

York 95.57 92.59 9.74 9.69 51.79 49.86

Avg 98.80 95.39 10.88 10.89 50.10 48.99

95% CI (98.07, 99.60) (94.69, 96.06) (10.72, 11.06) (10.78, 11.06) (49.33, 50.47) (48.44, 49.40)

a OA is observed average monthly precipitation amounts (mm).
b DA is downscaled average monthly precipitation amounts (mm).
c ON is observed average monthly number of rainy days (day).
d DN is downscaled average monthly number of rainy days (day).
e OSD is observed standard deviation of monthly precipitation amounts (mm).
f DSD is downscaled standard deviation of monthly precipitation amounts (mm).
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the probability distributions of the observed daily pre-

cipitation and the downscaled daily precipitation from

one random iteration generated by the NCEP data over

17 stations for the period 1979–2005. In the calculation,

only the days on which both observed and downscaled

precipitation data are available are counted [note that

only precipitation events larger than 0.25 mm (0.01 in.)

are considered, consistent with the threshold for de-

fining a ‘‘rain day’’ used in past work; e.g., Fitzpatrick

and Krishnan 1967; Hershfield 1971; Gallus and Segal

2004]. The precipitation interval used in the calculation

is 1 mm, and the probabilities of extreme precipitation

larger than 50 mm are considered together. From Fig. 8

it can be concluded that, although there are some dif-

ferences between the downscaled and observed proba-

bilities of daily precipitation in the range from 0.25 to

1 mm, the downscaling reproduces the probability dis-

tributions extremely well. Moreover, the observed and

downscaled probabilities of the largest precipitation

events—with daily precipitation greater than 50 mm—

are very close, which means that the downscaling, im-

portantly, is also effective in capturing the extreme

precipitation events for each station.

We can see that the downscaling captures the tem-

poral variability of the actual observations (Fig. 9). While

we generate many (1500) realizations of the downscaled

precipitation to construct our ensemble, it is extremely

unlikely that we will happen to reproduce the unique

sequence of daily precipitation events that characterizes

the actual observations. Nonetheless, it is instructive to

see if we can find members of our ensemble that not only

capture the overall statistical character of the observa-

tions but also happen to approximate well the observed

sequence of monthly precipitation anomalies. Figure 9

shows the observed and downscaled monthly precipi-

tation amount time series for three stations, with the

largest correlation coefficients between the observed and

downscaled monthly precipitation: Allentown (Fig. 9a),

Harrisburg (Fig. 9b), and Towanda (Fig. 9c).

As one important measure of statistical skill, we

evaluate whether the mean downscaled precipitation

estimates using the NCEP data (rain days only) are on

average closer to the observations than the climatolog-

ical mean for that season (Table 2; results using median

rather than mean of the 1500 downscaling realizations

are provided in supplementary Table S1). Ratios less

than unity indicate nominally better skill than the null

‘‘no skill’’ prediction of climatological mean values. We

used a remove-one-sample-at-a-time jackknife proce-

dure (Efron 1982) to provide nonparametric confidence

intervals (CIs) in the mean skill over all 17 stations. If

the associated upper 95% confidence limit remains be-

low unity, we conclude that the downscaling procedure
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yields a statistically significant improvement above the

climatological no-skill baseline. The ratios for each sea-

son (and annual mean) are in fact observed to be sig-

nificantly below unity, indicating, as we would hope, that

the downscaling does perform better than simply in-

voking climatology. Among the four seasons, the least

improvement occurs in summer, reflecting the fact that

much of the summer precipitation is convective. In this

case there is more of a stochastic element and less de-

pendence on the synoptic circulation.

Continuing the process of skill evaluation, we would

expect that if the downscaling is providing large-scale

information that usefully informs the local distribution

of precipitation, drawing from the precipitation CDFs

for the appropriate SOM node should yield a narrower

distribution than drawing simply from the climatological

daily rainfall distribution for the appropriate season. In

other words, accounting for the synoptic atmospheric

state ought to provide some additional discrimination

beyond a random draw from the climatological seasonal

distribution. We define the width of the respective PDFs

by the interquartile range (i.e., the difference between

the 75th and 25th percentiles of the distributions). Table 3

tabulates a skill metric defined as the ratio of the mean

squared width of the PDFs constructed from the ensemble

of 1500 downscaled precipitation values and the observed

climatological distribution. In this analysis, to get the more

precise PDFs with larger amounts of samples, we use a

different rainy day definition, one that is larger than 0 mm.

A ratio below unity indicates that the downscaled values

are drawn from a narrower PDF than would be the case

for the corresponding climatological distributions, and it

is therefore suggestive that conditioning on the large-

scale atmospheric state via the downscaling procedure

provides some additional predictive skill beyond cli-

matology. We once again use a jackknife procedure to

estimate confidence intervals and evaluate statistical

significance. Apart from a number of the stations in

spring (February–April), the ratios remain significantly

below unity. The possible reason for the exception with

the spring season results is that a large number of spring

rain days are governed by synoptic circulation patterns

with CDFs that have wide daily precipitation ranges.

We next compared the observed and NCEP down-

scaled precipitation fields with respect to several key

measures: mean monthly precipitation, average monthly

TABLE 6. As in Table 5, but for all 17 stations averaged over the GCMs (period 1961–2000, all months). The 95% confidence intervals are

given in parentheses.

Station ID OAa ONb OSDc DAd

Allentownj 99.48 9.52 52.90 107.03 (105.40, 107.80)

Chambersburgj 91.411 9.23 49.06 97.84 (96.18, 98.90)

Franklinj 01.06 11.79 45.12 106.56 (105.53, 107.26)

Greenvillej 92.19 12.19 40.73 96.81 (95.51, 97.41)

Harrisburgj 92.981 9.72 54.95 96.20 (94.80, 96.96)

Johnstownj 06.521 12.43 53.13 110.99 (109.42, 111.78)

Montrosej 10.25 12.37 52.68 117.54 (116.35, 118.10)

New Castlej 83.99 11.18 39.68 86.94 (85.82, 87.60)

Palmertonj 92.201 8.52 50.87 98.43 (96.43, 99.54)

Ridgwayj 00.71 12.81 43.02 105.11 (103.86, 105.80)

State Collegej 90.931 10.84 47.97 98.93 (97.53, 99.63)

Stroudsburgj 09.41 10.13 55.43 123.58 (121.33, 124.69)

Towandaj 79.81 9.99 42.32 85.13 (84.00, 85.92)

Uniontownj 94.611 11.68 44.60 102.15 (101.15, 102.71)

Warrenj 05.921 13.63 42.42 110.37 (109.39, 111.03)

West Chesterj 01.97 9.47 56.36 113.53 (110.24, 115.07)

Yorkj 93.45 9.67 54.59 101.89 (100.09, 102.73)

Avgk 96.87 (96.04, 97.94) 10.89 (10.77, 11.00) 48.58 (48.09, 49.07) 103.47 (102.59, 104.62)

a OA is observed average monthly precipitation amounts (mm).
b ON is observed average monthly number of rainy days (day).
c OSD is observed standard deviation of monthly precipitation amounts (mm).
d DA is downscaled average monthly precipitation amounts (mm).
e DN is downscaled average monthly number of rainy days (day).
f DSD is downscaled standard deviation of monthly precipitation amounts (mm).
g SA is raw GCMs simulated average monthly precipitation amounts (mm).
h SN is raw GCMs simulated average monthly number of rainy days (day).
i SSD is raw GCMs simulated standard deviation of monthly precipitation amounts (mm).
j CIs are based on jackknife analysis with respect to the GCMs.
k CIs are based on jackknife analysis with respect to the stations.
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number of rain days, and standard deviations of monthly-

mean precipitation (Table 4). The comparison was

performed over the 17 stations for the period 1979–2005.

For the forgoing discussion, we make use of a randomly

selected, representative realization from the ensemble

of 1500 downscaling surrogates, though similar results

are obtained for any realization. The observed average

monthly precipitation amounts vary from roughly 80 to

110 mm among the different sites, with an average of

98.8 mm. The downscaling slightly underestimates the

mean precipitation at 95.4 mm. This underestimation

bias is statistically significant according to the jackknife

error estimates, and it appears to result from the fact

that the downscaling underestimates the magnitude of

the most intense daily precipitation events (larger than

50 mm). The observed and downscaled average monthly

rain days are very close for all stations, with an identical

average over all stations of 10.9 days for both downscaled

and observed. The observed and downscaled standard

deviations of monthly precipitation totals are also simi-

lar, with the 95% confidence intervals overlapping

(albeit only just so), indicating that the downscaling

procedure is able to reproduce the observed variability.

Having validated the downscaling procedure for the

late-twentieth-century observations, we then turned to

the GCM simulations. We compared the same char-

acteristics of the precipitation field for the downscaled

and raw GCM precipitation data over the full data re-

cord 1961–2000. Results were analyzed by both GCM

(Table 5), averaging of the 17 stations, and station

(Table 6), averaging over GCMs. Errors relative to ob-

servations for both downscaled and raw GCM precipita-

tion values are compared in Tables 7 and 8, respectively,

while results for individual seasons are provided in

the supplementary information (supplementary Tables

S2–S9). Uncertainties in averages across the models are

determined based on jackknifing with respect to the

model, while uncertainties in averages across stations are

determined by jackknifing with respect to the station.

These comparisons yield a number of important in-

sights. First of all, the downscaled results are clearly

closer to observations than the raw GCM results for

nearly all the models and all the stations. This finding is

also true for averages over the stations and averages

over the models. Extremely large errors are found with

the raw precipitation field for individual GCMs with

respect to, for example, mean monthly precipitation

(see Tables 5 and 7). However, because these errors

are often of opposite sign in different models—that

is, either considerably below or above the observed

value—they tend to cancel. Averages over GCMs are

consequently considerably closer to observations than

individual GCMs. This finding is consistent with the

widely reported finding (e.g., Meehl et al. 2007) that av-

erages over multimodel ensembles often provide more

faithful estimates than individual models, presumably

because of the cancellation of errors specific to models.

In this particular case, the errors in question likely in-

volve the differing convective parameterization schemes

used to estimate precipitation in the various models.

While the downscaled model precipitation field is

closer in nearly all characteristics to observations than

the models’ raw precipitation field, it is worth noting

that statistically significant biases nonetheless remain in

the downscaled model estimates. Mean monthly rainfall

totals are, as they were for the late-twentieth-century

TABLE 6. (Extended)

DNe DSDf SAg SNh SSDi

9.96 (9.91, 10.00) 62.61 (61.29, 63.08) 92.81 (87.70, 98.40) 17.45 (16.87, 18.05) 44.31 (42.54, 45.50)

9.68 (9.57, 9.74) 53.64 (52.68, 54.09) 94.02 (90.69, 98.22) 18.37 (17.91, 18.99) 44.86 (43.24, 46.35)

12.66 (12.58, 12.71) 49.37 (48.95, 49.82) 88.79 (86.27, 93.32) 19.82 (19.43, 20.45) 39.53 (37.21, 41.07)

12.35 (12.27, 12.41) 44.62 (44.03, 45.05) 87.79 (85.04, 92.87) 20.11 (17.73, 20.76) 38.35 (36.64, 39.74)

10.16 (10.11, 10.20) 51.48 (50.45, 51.92) 91.42 (87.48, 96.69) 17.85 (17.31, 18.39) 43.42 (41.55, 44.73)

13.47 (13.38, 13.51) 51.09 (49.91, 51.72) 91.62 (88.21, 96.85) 18.35 (17.91, 18.79) 43.16 (41.38, 44.40)

13.33 (13.22, 13.39) 58.11 (57.36, 58.74) 93.64 (88.50, 98.72) 18.95 (18.49, 19.40) 41.94 (39.89, 43.59)

11.46 (11.38, 11.52) 44.72 (43.84, 45.20) 88.24 (84.69, 93.28) 19.40 (18.98, 19.98) 39.82 (38.04, 41.04)

8.61 (8.53, 8.67) 63.48 (61.95, 64.28) 91.70 (86.63, 96.78) 17.20 (16.66, 17.79) 44.10 (42.38, 45.27)

12.60 (12.52, 12.66) 49.51 (49.00, 49.87) 89.06 (86.61, 93.59) 19.93 (19.57, 20.55) 39.06 (36.71, 40.60)

11.58 (11.47, 11.65) 52.67 (52.15, 52.93) 92.29 (90.14, 97.26) 19.08 (18.71, 19.59) 42.32 (41.33, 43.26)

10.94 (10.83, 10.98) 69.52 (68.13, 70.23) 91.56 (86.18, 96.39) 17.76 (17.12, 18.40) 42.95 (41.05, 44.23)

10.51 (10.40, 10.55) 46.73 (46.35, 47.09) 92.68 (87.35, 97.69) 19.35 (18.91, 19.85) 41.17 (39.04, 43.09)

12.53 (12.42, 12.58) 47.07 (46.68, 47.40) 97.28 (94.33, 101.85) 19.07 (18.67, 19.56) 45.45 (43.89, 47.01)

13.64 (13.57, 13.69) 47.99 (47.43, 48.39) 85.46 (82.74, 89.61) 19.83 (19.48, 20.33) 37.02 (35.52, 38.25)

10.14 (9.99, 10.21) 66.56 (65.08, 67.22) 91.30 (87.79, 96.27) 16.99 (16.46, 17.54) 44.00 (42.27, 45.24)

10.43 (10.30, 10.46) 56.33 (55.45, 56.67) 93.05 (89.10, 97.04) 17.58 (17.03, 18.11) 45.19 (43.54, 46.66)

11.42 (11.29, 11.52) 53.85 (53.06, 54.43) 91.34 (91.17, 91.70) 18.65 (18.57, 18.74) 42.16 (41.97, 42.48)

15 JANUARY 2012 N I N G E T A L . 523



observations (Table 5), biased slightly high (the mean

monthly downscaled precipitation over all models and

stations is 103.47 mm, while the observed value is

96.87 mm). Rain day numbers are also biased slightly

at 11.42 days per month averaged over all models and

stations versus the observed value of 10.89 days per

month—the difference is small but statistically signifi-

cant. The monthly standard deviation of the downscaled

precipitation field is 53.85 mm averaged over stations and

GCMs, while it is 48.58 for the observations—a difference

that is once again statistically significant and suggests that

the downscaled GCM precipitation is slightly more var-

iable in time than the observations.

Some of the differences between the downscaled

GCM values are the result of model bias and differ-

ences in the simulated atmospheric states. However,

the similarity of the downscaled data suggests that a

large portion of the GCM differences is likely due to

differences in precipitation parameterization schemes.

That such bias remains in the downscaled estimates is

hardly surprising, as there are clearly systematic biases

in the various fields of the model (temperature, winds,

lapse rates, etc.) from which the downscaled precipitation

estimates are derived, and not even downscaling methods

can cure these ills. However, there is far greater consis-

tency among the downscaled model estimates with re-

spect to all diagnostics (monthly-mean precipitation, rain

days, and monthly standard deviation) than in the raw

model precipitation values. The downscaling procedure

appears to provide a more reliable determination of

whether precipitation is likely, and when it is likely, how

much an event will produce. These observations reinforce

previous findings (e.g., Hewitson and Crane 2006) that

bypassing the convective parameterization schemes in the

models yields precipitation estimates that are in all key

attributes more consistent among models, closer to ob-

servations, and likely more robust with respect to future

projections—an issue we will discuss further below.

Looking more closely at the computed relative errors

(Tables 7 and 8), we obtain some additional important

insights. We see, for example, that the ability of the

downscaled precipitation fields to reproduced observed

characteristics at our sites is highly model dependent

TABLE 7. Absolute errors with respect to observations (ex-

pressed as percent) for the average monthly precipitation amounts,

average monthly number of rainy days, and standard deviations of

monthly precipitation amounts across the 17 stations for all the

months during the period 1961–2000.

GCM names DPAa DPNb DPSDc SPAd SPNe SPSDf

CGCM3.1 2.12 3.30 8.08 10.48 101.52 25.46

CNRM-CM3 9.42 5.89 15.81 13.11 97.43 17.37

CSIRO Mk3.0 2.65 5.60 10.74 18.26 65.76 33.27

GFDL CM2.0 6.96 5.57 10.57 9.14 77.58 15.33

GISS-ER 19.38 12.03 23.55 45.02 47.07 17.68

IPSL CM4 5.19 4.18 14.83 25.13 79.39 6.35

MIUBECHOG 7.72 3.79 11.30 9.80 107.26 21.94

MPI ECHAM5 3.44 3.69 9.81 11.50 41.99 11.29

MRI CGCM2.3.2a 6.73 5.08 7.62 24.80 41.65 29.11

Avg across

nine GCMs

7.07 5.46 12.48 18.58 73.29 19.75

a DPA is downscaled percentages of absolute errors of average

monthly precipitation amounts.
b DPN is downscaled percentages of absolute errors of average

monthly number of rainy days.
c DPSD is downscaled percentages of absolute errors of standard

deviations of monthly precipitation amounts.
d SPA is raw simulated percentages of absolute errors of average

monthly precipitation amounts.
e SPN is raw simulated percentages of absolute errors of average

monthly number of rainy days.
f SPSD is raw simulated percentages of absolute errors of standard

deviations of monthly precipitation amounts.
g CIs are based on jackknife analysis with respect to the stations.
h CIs are based on jackknife analysis with respect to the GCMs.

TABLE 8. Absolute errors with respect to observations (ex-

pressed as percent) for the average monthly precipitation amounts,

average monthly number of rainy days, and standard deviations of

monthly precipitation amounts across the nine GCMs for all the

months during the period 1961–2000.

Station ID DPAa DPNb DPSDc SPAd SPNe SPSDf

Allentown 7.59 4.62 18.36 17.45 83.24 19.38

Chambersburg 7.53 4.92 9.33 19.21 99.02 15.03

Franklin 5.46 7.38 9.40 17.29 68.15 22.10

Greenville 5.06 2.53 9.54 17.48 64.99 18.91

Harrisburg 4.67 4.58 8.23 16.84 83.72 22.49

Johnstown 4.95 8.35 7.99 16.75 47.58 20.56

Montrose 6.61 7.81 10.30 21.00 53.25 23.74

New Castle 4.13 3.01 12.70 19.69 73.52 17.91

Palmerton 7.96 2.77 24.79 18.87 101.87 19.17

Ridgway 4.62 2.42 15.08 16.66 55.57 19.99

State College 8.79 6.84 9.79 18.19 75.96 17.41

Stroudsburg 12.95 8.02 25.43 21.44 75.30 23.60

Towanda 6.94 5.25 10.41 25.16 93.71 20.95

Uniontown 7.96 7.29 5.61 18.39 63.27 16.11

Warren 4.37 2.05 13.13 19.60 45.46 16.56

West Chester 11.50 7.08 18.09 16.36 79.50 22.51

York 9.03 7.87 3.93 15.51 81.89 19.42

Avg across

17 stations

7.07 5.46 12.48 18.58 73.29 19.75

a DPA is downscaled percentages of absolute errors of average

monthly precipitation amounts.
b DPN is downscaled percentages of absolute errors of average

monthly number of rainy days.
c DPSD is downscaled percentages of absolute errors of standard

deviations of monthly precipitation amounts.
d SPA is raw simulated percentages of absolute errors of average

monthly precipitation amounts.
e SPN is raw simulated percentages of absolute errors of average

monthly number of rainy days.
f SPSD is raw simulated percentages of absolute errors of standard

deviations of monthly precipitation amounts.
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(Table 7). Several models—CGCM3.1, CSIRO Mk3.0,

and MPI ECHAM5 to be specific—are able to re-

produce observed monthly-mean rainfall totals with

less than 5% error relative to observations. These same

models reproduce the observed frequency of rain days

with less than 6% relative error and the monthly

standard deviation with less than 11% relative error.

By contrast, relative errors remain high even for

the downscaled estimates (though considerably less

so than for the raw model precipitation) for certain

models, specifically GISS (error is nearly 20% for

mean precipitation, roughly 12% for frequency of rain

days, and roughly 24% for the standard deviation).

Looking at the breakdown of error by site (Table 8), we

see that certain sites (e.g., Stroudsburg and West Chester)

show particularly large errors in mean monthly pre-

cipitation (11%–13%) and monthly standard deviation

(18%–26%) (errors remain small for the number of rain

days). These are among the few wettest sites in our

network, and they also produce among the largest dis-

crepancies for both mean precipitation and monthly

standard deviation in the downscaling of modern (NCEP)

observations (Table 4). It is reasonable to speculate that

the larger biases we see in the downscaled simulations in

these locations may relate as much to the intrinsic biases

in the application of downscaling at these sites to any

features specific to the model simulations themselves.

Finally, we return to the issue of the potential sensi-

tivity of the downscaling procedure to the precise vari-

ables used in training the SOM. As we discussed earlier,

future projections of precipitation based on statistical

downscaling methods show some sensitivity to which

humidity variables are used. Previous work in Africa, for

example, indicates that use of specific humidity can lead

to projections of large future increases in mean pre-

cipitation. Comparisons with parallel dynamical down-

scaling results suggest that these larger projections are

unrealistic (B. C. Hewitson 2009, personal communica-

tion). A plausible explanation is that the exponential

dependence of specific humidity on temperature leads to

a large potential extrapolation error when projecting

future precipitation changes in a warmer atmosphere

based on training over an historical interval for which

there are no analog states for characterizing future at-

mospheric temperature. Arguably, the use of relative

humidity as a training variable avoids this problem.

Nonetheless, one might view this sensitivity to the

humidity variables used as a reasonable measure of a

key structural uncertainty in projecting future precipi-

tation changes. In this spirit, we have performed the

same analyses as described earlier but where specific hu-

midity has been added as an additional large-scale pre-

dictive variable in training the SOM. This alternative

procedure yields remarkably similar results, including very

similar relative errors (see supplementary Tables S10–

S16). Thus, it is not possible from the skill assessments

presented in this study to objectively favor one choice of

humidity variables over the other. In additional work in-

volving the downscaling of future climate change pro-

jections, we intend to use the sensitivity of projections to

this choice as a measure of structural uncertainty in pro-

jecting regional changes in precipitation characteristics

(Ning et al. 2011, manuscript submitted to J. Climate).

4. Conclusions

Using a specific application—reproducing historical

precipitation characteristics in Pennsylvania—we demon-

strated how statistical downscaling using self-organization

maps to condition local precipitation estimates on large-

scale atmospheric states can yield improved representa-

tions of precipitation characteristics. Using a variety of

skill metrics and internal consistency tests, we showed that

the downscaling procedure applied to modern (NCEP)

atmospheric observations realistically reproduces ob-

served daily precipitation characteristics at a network of

sites throughout Pennsylvania.

Next, we demonstrated that application of the same

SOM procedure to a suite of nine simulations from the

CMIP3 multimodel historical simulation archive yields

local precipitation estimates that form the model

simulations that agree better with both each other and

with historical observations than the raw GCM pre-

cipitation field. While the downscaling procedure does

not entirely eliminate biases in the modeled local pre-

cipitation statistics, it does reduce these biases consider-

ably, and it does provide greater consistency between the

models, suggesting that bypassing the individual model’s

own varying precipitation parameterization schemes can

yield more robust estimates of the distribution of local

precipitation from the models.

Finally, we found that similarly skillful precipitation

statistics could be obtained using either of two alterna-

tive representations of humidity information in training

the SOM, one in which only relative humidity is used,

another in which both relative and specific humidity are

used. Given that one cannot objectively distinguish, on

the basis of validation against historical data alone,

which of these two schemes is preferable, it is advisable

to consider the sensitivity to this choice as one measure

of structural error in examining downscaling results

applied to future climate change projections, where the

two schemes may give somewhat different results.
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