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[1] We test the performance of proxy-based climate field

reconstruction methods using sets of synthetic proxy climate

indicators. ‘Pseudoproxies’ are constructed through the

degradation of instrumental surface temperature data by additive

noise with variable statistical properties. Experiments are

performed using pseudoproxy networks of varying spatial and

seasonal representation and with varying noise attributes.

Implications for sampling strategies for improved paleoclimate

reconstructions are discussed. INDEX TERMS: 1620 Global

Change: Climate dynamics (3309); 1694 Global Change:

Instruments and techniques; 3309 Meteorology and Atmospheric

Dynamics: Climatology (1620); 3344 Meteorology and

Atmospheric Dynamics: Paleoclimatology

1. Introduction

[2] Reconstructions of global climate in past centuries rely on the
ability of relatively sparse sets of proxy data to resolve large-scale
patterns of variance in pre-instrumental climate fields [e.g. Fritts et
al., 1971; Bradley and Jones, 1993; Overpeck et al., 1997;Mann et
al., 1998, 1999; Jones et al., 1998]. The skill of such reconstructions
can be established through cross-validation with independent with-
held instrumental data [e.g.,Mann et al., 1998]. Addressing broader
questions regarding the sensitivity to spatial sampling, data quality,
and prospects for improved reconstructions, however, requires
simulation of the paleoclimate reconstruction process.
[3] Kutzbach and Guetter [1980] first considered the problem

of determining what network of proxy information (precipitation
and temperature estimates from pollen) is required to reconstruct
large-scale patterns of past climate (sea level pressure). Bradley
[1996] later examined sampling strategies for proxy-based recon-
struction of global mean temperature based on experiments with
instrumental and climate model data. Evans et al. [1998] consid-
ered the impact of sampling distribution and regional signal
strength variations in suggesting strategies for reconstructing
tropical SST from multiple coral proxy records. To date, however,
no studies have systematically simulated the global climate field
reconstruction process using synthetic datasets with statistical
character emulating that of actual and potentially available global
multiproxy networks. Such is the purpose of this study.

2. Data and Methods

2.1. Instrumental Surface Temperature Data

[4] We make use of all nearly complete (<30% missing annual
data, with a requirement of a minimum of 6 months data in a given
year) land air/sea surface temperature gridpoint data from 1856–
1998 [Jones et al., 1999], with missing data infilled using the
Regularized Expectation Maximization (‘RegEm’) technique
described by Schneider [2000]. This process is used to yield
1312 annual (Jan–Dec) and 1118 warm-season (Apr–Sep) infilled,
continuous 143 year gridpoint series. The infilled annual mean
surface temperature field will serve as our target for subsequent
reconstructions.

2.2. Pseudoproxy Data

[5] Networks of pseudoproxy data are generated through the
degradation of the instrumental surface temperature gridpoint data
by an additive noise component. A given network of MPRX

pseudoproxy indicators of length N = 143 years is constructed from
the random selection (without replacement) ofMPRX of the available
MINSTR surface temperature gridpoints. For each of the MPRX

instrumental gridpoint series, we generated an additive noise series
as an AR(1) process with autocorrelation as a priori specified for
that indicator, and with amplitude chosen to insure the signal/noise
ratio a priori specified for that proxy indicator. The pseudoproxy
network is subsequently used in experiments seeking to reconstruct
the surface temperature field itself, as described below.
[6] We examine sensitivity to the attributes of the pseudoproxy

network in the following ways: 1) We vary the number and
location of pseudoproxies to test the sensitivity to spatial sampling,
2) We use a mix of annual and warm-season mean gridpoint series
to represent the variable seasonal sensitivity within the proxy
network (it is unnecessary to additionally include cold season
indicators, since a cold-season half year mean is not statistically
independent from a combination of annual and warm half-year
information), 3) We vary signal-to-noise (‘SNR’) ratios in the
pseudoproxies to test the sensitivity to proxy data quality, 4) We
vary the structure of the noise from ‘blue’ to ‘white’ to ‘red’
(through the noise autocorrelation ‘r’) to test the effects of
preferential loss-of-resolved variance by the proxy at high or
low frequencies. The noise parameters can either be fixed, or
allowed to vary within the network with some specified ensemble
variance to simulate the variation in these attributes expected in
actual multiproxy data networks. We do not consider the additional
possible bias due to age-model uncertainties (i.e., dating errors). It
should nonetheless be noted that the indicators used in previous
multiproxy reconstructions by Mann et al. [1998, 1999] were
based almost exclusively on multiply replicated chronologies,
minimizing the influence of this latter potential source of bias.

2.3. Calibration and Cross-Validation

[7] Annual mean temperature patterns are reconstructed based
on calibration of the (potentially seasonally-mixed) information in
the pseudoproxy network against the M = 1312 annual mean
surface temperature gridpoint series during a training period of
duration equal to half the full available (143 year) interval. A split
calibration/verification procedure was used wherein both the
1856–1927 and 1928–1998 periods were alternatively used for
both calibration and for verification (i.e., independent testing of the
reconstructions with withheld instrumental data). The results
obtained were similar in both cases. We focus, however, on the
‘early miss’ experiments in which the later data are used for
calibration, and for which the influence of non-stationarity in the
climate is minimized [see Rutherford et al., 2002].
[8] The calibration technique is a generalization of the Mann et

al. [1998, 1999] approach making more complete use of the data
covariance information [see Schneider, 2001; Rutherford et al.,
2002]. Calibration is accomplished through estimating the corre-
lation matrix of the merged pseudoproxy + instrumental surface
temperature data series. The reconstruction uses the calibrated
covariance information to estimate the (missing) gridpoint temper-
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ature from only the (available) pseudoproxy indicators during the
independent reconstruction (and, in this case, verification) interval.
[9] For the purposes of simplicity, only temperature indicators

are considered. Actual multiproxy data are potentially sensitive to
other climate variables (e.g., precipitation). Since the calibration
method makes no assumptions of a local relationship between the
proxy indicator and the large-scale temperature field, the impact of
non-temperature influences is largely accommodated through
SNRs which vary within the pseudoproxy indicator ensemble.
For example, large precipitation anomalies are typically associated
with a local low pressure anomaly, which is in turn associated,
albeit not necessarily in a simple linear manner, with significant
advective surface temperature variations in other regions. Thus, a
precipitation-sensitive proxy indicator provides information about
the large-scale temperature field, though with a non-local and
potentially weaker effective signal.
[10] We made use of two distinct diagnostics of the data

variance resolved by the reconstructions [see e.g. Cook et al.,
1994] including the reduction of error (‘RE’) which uses the
calibration period climatology as a baseline (this is called ‘b’ by
Mann et al., [1999]), and the coefficient of efficiency (‘CE’) which
instead employs the verification period climatology as a baseline:

RE ¼ 1�
XN
i¼1

ð ŷi � yiÞ2
.XN

i¼1

ð ŷi � yicÞ
2 ð1Þ

CE ¼ 1�
XN
i¼1

ð ŷi � yiÞ2
.XN

i¼1

ð ŷ� yivÞ
2 ð2Þ

RE = 0 and CE = 0 represent the scores for a reconstruction which
simply specifies the climatological mean, and thus only positive
values of the statistics indicate statistically significant skill. CE = 0
is a more challenging threshold since, unlike RE, CE does not

reward reconstructing an observed change in mean relative to the
calibration period. Verification RE and CE scores are computed for
both global domain mean temperature (‘Glb’) and for the full
multivariate field [‘Mlt’—in this latter case the sums in (1) and (2)
extend both over time and over the MINSTR annual-mean
temperature gridpoints].
[11] Uncertainties in the reconstructions can be estimated from

the residual uncalibrated verification period variance. We also
examine the spectra of calibration residuals for evidence of system-
atic bias associated with preferential loss of reconstructed variance
at high or low frequencies.

3. Results

[12] A number of experiments were performed with pseudo-
proxy networks of varying sampling density, SNR, noise autocor-
relation, and mix of seasonal influence. Table 1 summarizes results
from a number of these experiments in which these sampling/noise
parameters were varied. Allowing the noise parameters to vary
randomly in space within each experiment yielded results indistin-
guishable from experiments in which they were fixed at an
ensemble mean so that, for simplicity, results from the former are
not shown. Some general observations from these experiments are:

i) Reconstructive skill is insensitive to the mix of seasonal vs.
annual information over a fairly large fractional range.

ii) Reconstructive skill is largely insensitive to the spectrum of
the noise, though, as discussed below, the spectrum of verification
residuals (which has implications for the nature of uncertainties in
reconstructed values) is not.

iii) At denser concentrations of available pseudoproxy net-
works, there is relatively little sensitivity to the precise distribution
of the pseudoproxies. At lower concentrations (e.g., less than 100

Table 1. Reconstruction Experiments for Different Pseudoproxy Network Indicating Experiment Group (w/ Number of Experiments in

Parentheses), Number of Pseudoproxies (MPRX), % of Surface Temperature Gridpoint Data Represented, % Annual (vs Warm-Season)

Indicators in Network (A%), Ensemble Mean Signal-to-Noise Ratio (SNR), Ensemble Mean Noise Autocorrelation (r), and RE and CE

Statistics for Full Field (‘Mlt’) and Global Mean (‘Glb’) Series

# MPR

EARLY VERIF RE CE

% A% SNR r Mlt Glb Mlt Glb

1 (2) 656 50 100 1 0.0 0.480 0.970 0.270 0.870
2 (2) 50 0.5 0.0 0.340 0.945 0.090 0.640
3 (2) 367 70 100 1 0.0 0.470 0.970 0.260 0.800
4 (2) 50 0.5 0.5 0.330 0.935 0.065 0.570
5 (2) 197 85 100 1 0.0 0.445 0.985 0.225 0.880
6 (4) 0.5 0.280 0.925 0.00 0.525
7 (3) 50 0.5 0.275 0.930 �0.01 0.520
8 (2) 0.5 0.290 0.910 0.01 0.375
9 (2) �0.5 0.305 0.890 0.055 0.470
10(2) 112 91.5 100 1 0.0 0.415 0.960 0.185 0.765
11(1) 30 0.385 0.965 0.145 0.780
12(2) 0.7 0.305 0.925 0.045 0.610
13(4) 0.5 0.275 0.875 0.015 0.335
14(3) 50 0.270 0.845 0.010 0.305
15(2) 30 0.265 0.845 0.015 0.370
16(2) 100 0.5 0.280 0.860 0.015 0.290
17(2) �0.5 0.280 0.855 0.030 0.380
18(3) 0.4 0 0.250 0.810 �0.01 0.240
18A 0.240 0.780 �0.02 0.125
18B 0.245 0.840 �0.01 0.375
19(2) 50 0.5 0.255 0.810 �0.005 0.185
19A 0.255 0.790 0.005 0.235
20(2) 100 0.9 0.300 0.855 0.035 0.210
21(2) 0.3 0.200 0.690 �0.030 0.080
22(2) 63 95.0 100 1 0 0.380 0.955 0.14 0.72
23(2) 0.5 0.245 0.785 0.00 0.18
24(2) 37 98.5 100 1 0 0.360 0.920 0.12 0.75
26(1) 20 95.5 100 1 0 0.320 0.860 0.095 0.62
28(1) 13 99 100 1 0 0.275 0.750 0.055 0.185
29(1) 50 0.5 0.12 0.305 0.00 0.04
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pseudoproxies) this is less true. There is more discussion of this in
the context of a specific example below.
[13] In Figure 1 we show two sample ‘pseudoproxy’ indicators

along with the corresponding instrumental annual gridpoint surface
temperature series taken from one such experiment (18A: white
noise component w/ SNR = 0.4, 112 annual-mean-only temper-
ature pseudoproxies available). Visually, the comparison between a
typical pseudoproxy and corresponding surface temperature series

closely resembles that for actual proxy data. Indeed, an SNR of 0.4
is equal to an average shared variance between proxy and instru-
mental gridpoint of r = 0.29, (r2 = 0.08), which is typical of
estimates of local temperature correlations with multiproxy indi-
cators [see e.g. Jones et al., 1998].
[14] Global mean temperature reconstructions are compared

against the actual infilled verification period global mean temper-
ature series (Figure 2). Also shown are the corresponding residuals
and their associated spectra. For pseudoproxies with a white noise
component, the spectrum of residuals is itself approximately white.
For pseudoproxies with a red noise component, on the other hand,
the spectrum of residuals shows similar evidence of redness. If
actual proxy indicators have a red noise error component, which is
equivalent to the preferential loss of lower-frequency information,
estimates of uncertainties in the longest timescales of variation will
be larger than is indicated from the nominal unresolved variance,
and must be taken into account in estimating appropriate confi-
dence intervals [e.g. Mann et al., 1999].
[15] At relatively modest percentages of missing data, the recon-

structive skill is relatively insensitive to the precise spatial sampling
(because most spatial degrees of freedom in the field are sampled).
However, greater sensitivity is observed at lower sampling densities
(particularly at lower SNR. The resolvability of ENSO-scale temper-
ature patterns of variance depend somewhat sensitively, for exam-
ple, on how well the eastern tropical Pacific is sampled. Figure 3
compares the actual infilled instrumental surface temperature pattern
for 1877(a), a known strong El Nino year, along w/ reconstructions
based on 112 randomly distributed pseudoproxies with (b) no noise,
and with (c, d) SNR of 0.4 for two different random realizations.
Note that distribution (c), with greater sampling in the eastern and
central tropical Pacific, more faithfully captures the El Nino-related
pattern of warmth for that year than another distribution (b) with the
same global sampling density and SNR.
[16] It is of interest to compare the results of the pseudoproxy

experiments with those obtained for actual multiproxy reconstruc-
tions [Mann et al., 1998, 1999]. For example, experiment 19A in
Table 1, with SNL = 0.4, r = 0.5, and 50/50 split between annual vs.
warm-season indicators compares favorably with the results
obtained using the ‘RegEm’ approach on e.g. the same 112
indicators proxy indicators of Mann et al. [1998] that are available

Figure 2. Global mean surface temperature reconstruction (red) along with actual infilled data (blue) for experiments 18A and 19A.
Residuals are shown (green) along with the corresponding spectrum of residuals (right) based on multiple-taper procedure described by
Mann and Lees [1996].

Figure 1. Sample ‘Pseudoproxy’ series for two gridpoint
locations (top) 37.5N, 22.5E and (bottom) 12.5N, 32.5W from
experiment 18A (Table 1) along with the associated actual
instrumental annual-mean temperature series.
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back to 1820 (Glb = 0.82, Mlt = 0.25). Though the intent here is to
address the underlying sampling issues as generally as possible, it is
worth noting that an experiment using the approximate actual
locations of the 112 indicators used by Mann et al. [1998] yields
quite similar results (Glb = 0.85, Mlt = 0.26). Taking this as a
baseline estimate of the fidelity of global surface temperature
reconstructions possible with currently available global multiproxy
networks, it is possible to use the results of these experiments (i.e.
Table 1) to gauge prospects for improved reconstructions based
either on the acquisition of more widespread or higher quality proxy
data. For example, similar levels of increased skill (Mlt RE = 0.3)
might be expected, roughly speaking, given either (i) the same
number of proxy indicators (112) as used by Mann et al. [1998],
with the average SNR were increased from 0.4 to 0.7 (i.e., experi-
ment 12) or (ii) the SNR kept approximately the same (0.5) but the
number of indicators nearly doubled to 197 (e.g. experiments 7–9).
Of course, at this level of sparseness, as shown earlier, the particular
set of locations of the proxy data can be a quite significant factor.
Moreover, in actual paleoclimate reconstruction, there are addi-
tional practical constraints governing the possible distribution of
such locations (e.g., where coral records are actually available).

4. Conclusions

[17] The results of the experiments using synthetic ‘pseudo-
proxy’ indicators derived from the instrumental record itself to

reconstruct instrumental surface temperature patterns over inde-
pendent intervals in time support conclusions from cross-validation
results for actual proxy-reconstructions. These results furthermore
place upper limits on the possible resolved variance in proxy-based
paleoclimate reconstruction, based on experiments using ‘‘perfect’’
(noise-free) proxies. Finally, the results of these experiments sup-
port at least two distinct strategies for improved proxy-based large-
scale surface temperature pattern reconstructions. Similar levels of
resolved spatial variance can be obtained by a strategy of wide-
spread sampling (hundreds of proxies) with relatively low SNRs, or
more selective sampling with a smaller number of proxy indicators
with higher signal-to-noise ratios. In the latter case, in particular,
certain regions are likely to be of particular importance (e.g. the
tropical Pacific). Initial experiments with forced and control model
simulations using noise-free indicators are described by Rutherford
et al. [2002]. Similar experiments generating long synthetic proxy
climate time series are currently underway. Such experiments
should allow us to investigate implications on longer timescales
that cannot be addressed with experiments, such as are described
here, based on resampling of the instrumental record.
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NSF-sponsored Earth Systems History program.
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Figure 3. Actual (a) and Reconstructed Surface Temperature
Anomaly Pattern (relative to 1961–1990 mean) for the year 1877
From Experiments 10B (b), 18A (c) and 18B (d), illustrating the
influence of both SNR and the specific locations of pseudoproxies
on the fidelity of the reconstructed pattern.
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