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a b s t r a c t

The response of salinity in the Delaware Estuary to climatic variations is determined using statistical
models and long-term (1950-present) records of salinity from the U.S. Geological Survey and the Haskin
Shellfish Research Laboratory. The statistical models include non-parametric terms and are robust
against autocorrelated and heteroscedastic errors. After using the models to adjust for the influence of
streamflow and seasonal effects on salinity, several locations in the estuary show significant upward
trends in salinity. Insignificant trends are found at locations that are normally upstream of the salt front.
The models indicate a positive correlation between rising sea levels and increasing residual salinity, with
salinity rising from 2.5 to 4.4 per meter of sea-level rise. These results are consistent with results from 1D
and dynamical models. Wind stress also appears to play some role in driving salinity variations,
consistent with its effect on vertical mixing and Ekman transport between the estuary and the ocean. The
results suggest that continued sea-level rise in the future will cause salinity to increase regardless of any
change in streamflow.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Salinity influences both the physical properties of an estuary
and the characteristics of its ecosystem. For example, salinity is the
dominant factor regulating stratification. Even small changes in the
salinity of an estuary can have a significant impact on the estuary's
ecosystem. For example, salinity influences the spread of oyster
disease (Powell et al., 1992), the distribution and diversity of
ammonia-oxidizing bacteria (Bernhard et al., 2005), and the
development of phytoplankton blooms (Gallegos and Jordan,
2002). Understanding and mitigating the impacts of changing
salinity are particularly important because climate change and
other human activities have already stressed many estuarine eco-
systems (Kennish, 2002).
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Many climatic and oceanic factors, including streamflow, sea
level, oceanic salinity, and wind stress, have an influence on the
salinity and water quality of an estuary. Streamflow determines the
amount of fresh water entering the estuary. Elevated streamflows
are typically associated with fresher water in the estuary; lower
streamflows are associated with increased salinity in the estuary.
Higher sea levels increase salinity by bringing more salt water into
the estuary. Variations in oceanic salinity alter the salinity of water
circulating into the estuary. Finally, wind stress may influence
salinity through vertical mixing, Ekman transport and upwelling
(Banas et al., 2004), and other mechanisms.

Climate change has the potential to cause changes in all of these
variables. Precipitation amounts, frequencies, and intensities are
expected to change in many areas as a result of anthropogenic
climate change, and the associated effects on streamflow may be
complicated by land use and evaporation changes (Krakauer and
Fung, 2008). Global mean sea level has risen significantly during
the twentieth century and is expected to rise at an increasing rate
through the twenty-first century (Rahmstorf, 2007; Vermeer and
Rahmstorf, 2009; Church et al., 2013). Meanwhile, changes in
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land use and large-scale atmospheric circulation have slowed
winds over much of the Northern Hemisphere land area (Jiang
et al., 2009; Vautard et al., 2010), although wind speeds have also
increased in some areas (Hartmann et al., 2013).

Regardless of the causes, salinity change could be detrimental to
many estuaries. This study focuses on the salinity of the Delaware
Estuary on the United States East Coast. Over 8 million people live
within the Delaware River basin (Sanchez et al., 2012), and the
estuary contains the largest freshwater port in the United States
(Philadelphia) (Kauffman et al., 2011). The Delaware River and Es-
tuary provide a significant amount of freshwater to New York City
and Philadelphia. Salt intrusion into the Philadelphia area water
supply can occur during periods of high salinity (Hull and Titus,
1986). These factors prompt the Delaware River Basin Commis-
sion to carefully regulate the position of the salt front in the estuary.
In addition, species in this estuary are typically sensitive to salinity;
and interactions between parasites and hosts, as well as predators
and prey, are often influenced by salinity. For instance, eastern
oysters, a keystone species in the estuary, are host to two parasites
that cause important diseases: Perkinsus marinus (dermo disease)
and Haplosporidium nelsoni (MSX disease). The distribution of both
parasites, as well as that of the oyster, is restricted by low salinity,
but oysters can tolerate much lower salinity than either parasite,
thereby providing low-salinity refuges from disease in the upper
estuary (Haskin and Ford, 1982; Bushek et al., 2012; Ford et al.,
2012).

Because of the importance of the estuary and river for shipping,
drinking water, and fishing, a number of studies have examined the
physical properties of the estuary. Salinity is higher in the center of
the estuary and lower near the shores. The estuary is weakly to
partially stratified, and the lateral salinity difference is typically
greater than the vertical difference (Wong and Münchow, 1995;
Wong, 1995). However, significant vertical stratification can occur
in the main channel (Aristiz�abal and Chant, 2013). The estuary
experiences two tides per day as a result of a large principal lunar
semidiurnal (M2) constituent (Wong, 1995). Salinity variability in
the estuary produced by tidal advection is larger than the vari-
ability caused by streamflow (Garvine et al., 1992). Sea level and
circulation also vary on the subtidal time scale primarily as a result
of wind forcing (Wong and Garvine, 1984).

Several numerical modeling studies have examined the
response of salinity to sea-level rise (Hull and Tortoriello, 1979; U.S.
Army Corps of Engineers Philadelphia District (1997); Kim and
Johnson, 2007). These studies found that salinity should increase
in response to sea-level rise in most of the estuary. Numerical
models have produced similar results in other estuaries, including
the Chesapeake Bay (Hilton et al., 2008) and the San Francisco Bay
(Cloern et al., 2011).

Although numerical model simulations can be informative, they
are also subject to potentially restrictive assumptions and are no
substitute for long-term observations of salinity trends. For
example, all modeling studies to date assume that sea-level rise has
no influence on bottom topography, even though it is likely that
sea-level rise causes increased shoreline erosion, which increases
sediment deposition (Cronin et al., 2003). Thus, empirical methods
are an essential complement to numerical models for determining
the effects of climate change and sea-level rise on salinity.

Ordinary linear regression is commonly applied to empirically
model salinity. For example, Garvine et al. (1992) and Wong (1995)
used linear regression to model the response of the salt intrusion
length to streamflow in the Delaware Estuary. Marshall et al. (2011)
used multiple linear regression to build predictive models of
salinity in the Florida Everglades. However, when applying linear
regression, care must be taken to account for issues such as cor-
relation among data (autocorrelation), non-constant variance
(heteroscedasticity), and non-linearity that are commonly found in
water quality data (including salinity data).

Autoregressive models have been applied to empirically model
salinity by taking advantage of the highly autocorrelated nature of
most water quality data. Using autoregressive models, Gibson and
Najjar (2000) predicted the response of salinity in the Ches-
apeake Bay to future changes in streamflow, and Hilton et al. (2008)
tested whether sea-level rise has caused significant changes in
Chesapeake Bay salinity. Saenger et al. (2006) used autoregressive
models to relate river discharge to salinity and to reconstruct Ho-
locene discharge and precipitation in the Chesapeake Bay
watershed.

Other studies have applied additive models to empirically
model salinity. The additive model and the related generalized
additive model expand the traditional linear regression model by
modeling the response variable with one or more smooth functions
with forms that are nonparametric (i.e., are not defined a priori).
Several authors have recently applied these models in studies of
salinity and other water quality metrics. Jolly et al. (2001) and
Morton and Henderson (2008) used additive and generalized ad-
ditive models to determine changes in river salinity. Autin and
Edwards (2010) applied additive models to extract tidal variations
from salinity, dissolved oxygen, and temperature data and found
that the additive methods performed better than multiple
regression.

Neither additive nor autoregressive models offer a complete
solution to the problems of autocorrelation, non-linear relation-
ships, and heteroscedasticity commonly found in water quality
data. Additive models are not typically robust against correlated or
heteroscedastic errors, and autoregressive models do not handle
heteroscedasticity or non-linear relationships between variables.

Additive mixed models (AMMs) offer a solution to the compli-
cations commonly encountered when modeling water quality time
series. AMMs combine the nonparametric smooth functions of
additive models with the ability to handle correlated errors and
observations. AMMs are popular in many environmental fields that
deal with autocorrelated and non-linear data, such as air pollution
(Coull et al., 2001) and paleoclimatology (Simpson and Anderson,
2009). In this work, AMMs are applied to perform a data-driven
analysis of the effects of climatic variations on salinity in the
Delaware Estuary.

2. Methods

2.1. Study area and data

The Delaware Estuary is located in the Eastern United States to
the east of the Chesapeake Bay (Fig. 1a). The Delaware River is the
primary source of river discharge to the estuary. The head of tide
extends to Trenton. Salt intrusion normally extends through the
lower half of the estuary (Garvine et al., 1992).

Salinity in the Delaware Estuary has been measured through
many differentmonitoring programs, including surveys, automated
sensors, and boat sensors. However, records with long-term data
coverage are rare. The goal of this analysis was to determine which
variables have an influence on salinity over long time periods. In
addition, the statistical models that were applied perform better
with larger amounts of data. As a result, of the many salinity
datasets that are available, the automated sensor data from the
United States Geological Survey (USGS) and bottom salinity mea-
surements from the Haskin Shellfish Research Laboratory (HSRL)
were selected for statistical modeling. Both datasets are suitable for
studying long-term trends, as they include a large number of
measurements and together cover the period from the 1950s to the
present.



Fig. 1. a: Map of the United States East Coast. Black box indicates the region shown in b. b: Map of the Delaware Estuary, including the sea-level measurement site at Atlantic City
and the locations where the USGS measured salinity and streamflow. Black box indicates the region shown in c. c: Locations of the oyster beds where the Haskin Shellfish Research
Laboratory measured bottom salinity. Names correspond to the IDs in Table 1b.
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The USGS has measured near-surface salinity at five locations in
the Delaware Estuary since the 1960s (Table 1a, Fig. 1b). The salinity
data are reported as daily averages that are computed from
instantaneous measurements every 15 min. The measurements
from Reedy Island Jetty contain the least amount of missing data.
The USGS discontinued measurements at Ship John Shoal in 1986.
Chester, Fort Mifflin, and Ben Franklin Bridge contain a large
amount of missing data, particularly during winter months.

When this analysis was performed, the USGS had approved the
accuracy of salinity measurements through 2012, so values from
Table 1
a: Summary of USGS salinity data. Columns provide station name, axial distance
(distance from the mouth of the estuary), percent of non-missing monthly means
during 1964e2012, and mean salinity for the five USGS salinity stations in the es-
tuary. Mean salinity was calculated from all available monthly means. Axial distance
was obtained from the Delaware River Basin Commission. b: Summary of oyster bed
salinity data. Columns provide oyster bed ID, approximate axial and lateral distance,
and mean of all available bottom salinity measurements for each oyster bed. Axial
and lateral distances are approximated based on distances from the lines shown in
Fig. 1c.

(a)

Name Axial dist. (km) Data coverage (%) Mean salinity

Ben Franklin Bridge 161 77 0.12
Fort Mifflin 147 31 0.15
Chester 133 74 0.22
Reedy Island 87 87 4.4
Ship John Shoal 60 28 13

(b)

ID Axial dist. (km) Lateral dist. (km) Number of obs. Mean salinity

ARN 34.87 �1.82 409 11.5
MID 28.62 �0.93 303 13.6
COH 26.64 �2.98 643 13.9
SHJ 26.00 �0.44 178 14.8
SHR 21.68 �1.07 596 15.0
BEN 16.91 �2.82 491 17.0
NPT 14.69 �5.11 120 16.3
HGS 13.83 �3.45 193 17.0
NWB 13.27 �2.91 572 17.5
LDG 9.83 0.41 226 19.6
BDN 9.29 �5.91 329 17.7
EIS 7.69 �3.89 316 19.1
the earliest possible date through 2012 were used. Salinity mea-
surements from all locations were converted from electrical con-
ductivity to practical salinity units using the algorithm introduced
by Lewis and Perkin (1981) and simplified by Schemel (2001). To
focus on long-term variations and to reduce the computational
time needed to fit the statistical models, the salinity data were
converted from daily means to monthly means by averaging any
month with at least 15 days of data. Plots of the annual cycles and
anomalies in these data are shown in Fig. 2. Salinity is typically
highest in late summer and early autumn and lowest in mid-spring,
and streamflow follows the opposite pattern. Similarly, streamflow
anomalies were lowest and salinity anomalies highest during the
extensive drought in the 1960s and reversed during the wetter
1970s and 2000s.

The accuracy of the USGS salinity measurements should be
sufficient for statistical analysis. The earlier USGS measurements
were made with a flow-through monitor. The accuracy stated by
the USGS documentation for electrical conductivity (salinity)
measurements from the flow-through monitor is ±3% of the full
scale (Gordon and Katzenbach, 1983). The USGS also issues an
annual water data report for each location, which classifies the
measurements into four accuracy categories. During recent years,
the USGS has typically categorized the accuracy as ±3�10% or
±10�15%. Even ±3% may be too pessimistic, however, as
Katzenbach (1990) determined that the flow-through monitor was
more accurate than other systems and that the monitor performed
better than the stated accuracy. Furthermore, some USGS locations,
including Reedy Island, have recently switched to a YSI Incorpo-
rated sonde that has a stated salinity accuracy of 0.1 or 1%,
whichever is greater (Mark R. Beaver, personal communication,
March 5, 2007). Assuming these errors are random, they will be
absorbed by the model residual and will not bias the analysis.

Relocations are more difficult to account for and could affect the
analysis. The USGS station at Chester moved 0.8 km upstream in
April 1981, and the Ben Franklin Bridge station moved 0.09 km
upstream in July 1988. Despite these relocations, the USGS has
approved these data, so no attempt was made to correct for the
effects of the relocations.

Salinity was also measured at various oyster beds in the Dela-
ware Bay by the HSRL. Haskin (1972) and Haskin and Ford (1982)



Fig. 2. a: Mean annual cycles of salinity and streamflow. The annual cycles were calculated using all data after 1970 to exclude the unusual drought in the 1960s. b: Time series of
anomalies.
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report some results from this measurement program. From the
1950s to about 1980, HSRL salinity measurements were made by
titration; thereafter, conductivity was measured using an “Autosal”
Laboratory Salinometer and converted to practical salinity units.
The sampling frequency was irregular; many beds were sampled
once or twice per month, and sampling occurred more often in the
warm season. The locations of the 12 oyster beds used in this
analysis are shown in Fig.1c, and river distances andmean salinities
are provided in Table 1b. Whereas the USGS measures surface
salinity, the HSRL measured bottom salinity. Because the mea-
surements weremade intermittently from about 1950 to 1990, they
were not reduced to monthly averages. Tide stage, streamflow, and
day of year are included in the statistical models used to analyze
these data to minimize the impact of the intermittent and instan-
taneous sampling frequency.

Daily averages of streamflow in the Delaware River at Trenton,
NJ were obtained from the USGS. At Trenton, the flow is approxi-
mately 58% of the total discharge into the estuary from land (Sharp,
1983; Sharp et al., 1986). Measurements were also obtained from
the Schuylkill River near Philadelphia, PA, which accounts for an
additional 15% of the total discharge. The Schuylkill gauge, which is
upstream of the entrance of the river into the Delaware River, has a
drainage area of 4903 km2 compared to the total of 4952 km2 in the
watershed. To approximate the actual flow into the Delaware River,
the Schuylkill gauge measurements were multiplied by the ratio of
the total drainage area to the gauged drainage area and added to
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the corresponding day's average streamflow at Trenton (except
when analyzing the salinity at the Ben Franklin Bridge, which is
upstream of the Schuylkill River). No other river or stream con-
tributes more than 1% to the total discharge (Sharp et al., 1986).

For use in modeling monthly mean salinity at the five USGS
stations, the daily total streamflows were converted to monthly
means. Before modeling the instantaneous oyster bed salinity
measurements, the daily streamflow measurements were
smoothed with an exponential moving average with a weight co-
efficient of 1/15. This accounts for the slow response of the estuary
to streamflow. The weight coefficient was determining by maxi-
mizing the model's log-likelihood. Goodness of fit measures also
indicated that applying an exponential moving average produced
better fits than other methods, such as applying a simple lag.

Monthly averages of sea level at Atlantic City, NJ were obtained
from the Permanent Service for Mean Sea Level (Holgate et al.,
2013). Atlantic City was selected because it is just outside of the
estuary. To match the monthly mean sea level with the instanta-
neous oyster bed salinity measurements, the mean sea levels were
interpolated to the days of the oyster bed salinity measurements
using cubic splines.

Because the oyster bed salinities weremeasured throughout the
tidal cycle, it is also necessary to also account for tidal fluctuations
in sea level. However, measurements of sea level with sufficient
temporal resolution are not available for most of the time period of
the oyster bed salinity measurements. Instead, the water level at
Ship John Shoal, which is approximately in the middle of the axial
length of the oyster beds, was approximated using harmonic con-
stituents obtained from the National Ocean Service. Although the
time difference between a high or low tide and the corresponding
salinity measurement is provided in the HSRL data, the actual time
of measurement is not. Therefore, to match the salinity measure-
ments with a time andwater level, the water level predictions were
offset by the provided time difference. Then it was assumed that
salinity measurements would have only taken place during the day
(8AMe8PM), so the appropriate offset high or low water level in
this rangewas selected. In the event that measurements could have
occurred at either 8AM or 8PM, the twowater levels were averaged.
The subtidal mean sea levels discussed in the previous paragraph
are not correlated with the tidal water levels, so it is permissible to
include both in the statistical models.

The accuracy of the oyster bed data is unknown, and errors may
be present in the data, particularly since the data were read from
punch cards. To eliminate outliers, the local outlier factor method
(Breunig et al., 2000) was applied. Here, the outlier factor was
based on how isolated an observation's salinity, log-streamflow,
and sea-level values are compared to a minimum of the 15 near-
est points in the three dimensional salinity-streamflow-sea-level
space. The 1% of the data (43 observations) with the worst
outlier factors were discarded. Although removing these outliers
improved the error distributions obtained after applying the sta-
tistical models later in the analysis, the results of the analysis were
not significantly different. The time series of salinity at each oyster
bed after removing outliers are shown in Fig. 3. As would be ex-
pected, the patterns in the oyster bed bottom salinity are similar to
those in the USGS surface salinity data. Salinity is typically lowest
in spring and highest in autumn, and the impact of the extensive
drought in the 1960s is immediately visible in the anomaly time
series.

Long-term measurements of offshore salinity outside of the
Delaware Bay are not available. Instead, the Gulf Stream Index
(Taylor, 1995), which represents the first principal component of
the latitude of the north wall of the Gulf Stream, was used as a
proxy for oceanic salinity. Lee and Lwiza (2008) determined that
the index is a suitable proxy for salinity in the Mid-Atlantic Bight.
The monthly data from 1966 to 2013 were obtained from http://
www.pml-gulfstream.org.uk/.

Wind speed and direction were obtained from the North
American Regional Reanalysis (Mesinger et al., 2006), which has a
horizontal resolution of 32 km. Reanalysis data are advantageous
because they contain no missing data or instrument biases and
because they provide complete coverage over water (although they
do so by blending observations with imperfect models). Wind data
were taken from three reanalysis grid points over the Delaware Bay
between 38.8 and 39.63�N, 74.9e75.6�W. 3-hourly wind speed and
direction from the reanalysis were used to compute the meridional
and zonal components of the wind stress with the equation

t!¼ C10r
����U10
��!����U10

��!
, where C10 is a drag coefficient, r is the density of

air,
����U10
��!���� is the wind speed at 10 m, and U10

��!
is the wind vector at

10 m. C10, which varies with wind speed, was calculated using the
equation from Wu (1982) assuming constant air density. The wind
stress components andmagnitudewere then averaged over the bay
and by month to form monthly averages. Finally, alongshore and
cross-shore wind stresses were calculated using an alongshore di-
rection of south-southwest to north-northeast (the orientation of
the estuary's mouth) and a cross-shore direction of east-southeast
to west-northwest. Wind stresses over the shelf were also
computed but not used because they were nearly identical to
stresses over the Bay at the monthly time scale. The reanalysis data
only cover 1979 through the present. When relating salinity to
wind stress, any salinity measurements before 1979 were dropped.
2.2. Statistical models

The influences of observed streamflow, sea level, wind stress,
and oceanic salinity on estuarine salinity were extracted using
AMMs. A separate AMMwas used tomodel each USGS location. The
oyster beds are relatively similar to each other, so one AMM was
used to model all of the oyster beds together with a term included
to account for random variability between beds.

The basic model for surface salinity at each USGS station was

Si ¼ b0 þ b1Xi þ fQ ðQiÞ þ fMðMonthiÞ þ εi (1)

where Si is the ith monthly-mean salinity value, b0 is a constant
intercept, fQ(Qi) is a spline that relates salinity to streamflow and is
evaluated at the streamflow value Qi, and fM(Monthi) is a cyclic
spline for capturing seasonality in salinity that is not explained by
the other independent variables and is evaluated at the ith month.
b1Xi is an optional term used to test the importance of another
variable Xdfor example, sea level. This term is analogous to that in
an ordinary or multiple linear regression model. The residual εi is
assumed to follow a Gaussian distribution with zero mean and
variance s2L, i.e. εi � Nð0; s2LÞ, whereL functions as a weight that
accounts for autocorrelation and heteroscedasticity. Note that an
ordinary regression model assumes εi � Nð0; s2Þ, and therefore
does not account for autocorrelation or heteroscedasticity.

For the oyster bed bottom salinity data, the basic model was

Sij ¼ bi þ b0 þ
�
b1Xij

�þ b2Hij þ b3xi þ b4yi þ fQ
�
Qij

�
þ fDD

�
DDij

�þ εij (2)

where the subscript j denotes an individual observation at the ith
oyster bed. In thismodel,bi is aunique intercept foreachoysterbed; it
accounts for random variability in background mean salinity mea-
surementsateachoysterbed. Thisvariabilitycouldoccur as a resultof
other physical factors that are not in the model such as depth,

http://www.pml-gulfstream.org.uk/
http://www.pml-gulfstream.org.uk/


Fig. 3. a: Mean annual cycles of bottom salinity at the oyster beds. b: Time series of salinity anomalies.
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proximity tounmodeled freshwater sources, or local circulation.All of
the b parameters are analogous to the parameters in amultiple linear
regressionmodel. b0 is a constant intercept that applies to every bed.
b1Xij is an optional term for some predictorX. b2 gives the slope of the
response of salinity to tidal water level and Hij is the water level
predicted fromharmonics.b3 is the axial salinity gradient and xi is the
relative axial distance for the ith oyster bed (column 1 in Table 1b).
Lateral salinitygradients can be large in theDelaware Estuary (Wong,
1994), so b4yi accounts for the lateral salinity gradient and distance
(column 2 in Table 1b). fQ(Qij) is a smooth function of exponential
moving averaged streamflow. fDD(DDij) is a cyclic spline that relates
salinity to decimal day. Finally, the residuals εij � Nð0; s2LiÞ, where
Li includes only heteroscedasticity.
To test the influence of sea level, oceanic salinity, and wind
stress on the salinity measurements, additional terms representing
these variables were inserted as the optional terms in the two basic
models (Equations (1) and (2)). For example, to test the influence of
sea level on the USGS salinity data, an additional term b1Hi was
added to Equation (1). This term works like a traditional linear
regressionmodel, and is known as a parametric term because it has
a specified form. In this example, b1 represents a slope that models
the linear response of salinity to sea level. When adding additional
terms to the model, all available data were used (in other words,
pairwise deletion of missing values was applied). The time trend
and sea level slope were tested for both the USGS salinity moni-
toring locations and for the oyster beds. The influences of oceanic
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salinity and wind stress were only tested at the USGS salinity
monitoring locations.

2.2.1. Smoothing functions
The terms fQ, fM, and fDD in Equations (1) and (2) are smoothing

functions that enable the response of salinity to the predictor var-
iables to be modeled nonparametrically. For example, fQ models the
influence of streamflow on salinity. The shape and amount of
smoothness of the functions are determined by the model fitting
algorithm. The USGS locations are notably different, so fQ and fM are
determined separately for each location. The oyster beds have
sufficiently similar responses to streamflow and residual season-
ality, so all of the oyster beds were grouped together to determine
fQ and fDD. Tomake themodel algebraically fit, the expected value of
every smoothing function is set to zero (Wood, 2006). This is a
purely algebraic concern and has no practical influence on the re-
sults other than centering the smoothing functions at zero.

Thin plate regression splines (Wood, 2003) were applied to
model the response of salinity to streamflow. These splines are
considered optimal for use in additive models (Wood, 2006).

To account for residual seasonal effects, a cyclic cubic spline was
used to model the response of salinity to the current month (for the
USGS monthly averages) or to the decimal day of the year (for the
HSRL instantaneous measurements). A cubic spline is a piecewise
curve composed from a number of cubic polynomials. The locations
where the polynomials are joined are known as knots. At each knot,
the values and first and second derivatives of the joining poly-
nomials are equal. For cyclic cubic splines, the first and last knots
also have equal values and first and second derivatives. This makes
a cyclic spline useful for modeling data where the response should
be similar at the boundaries of the predictor variable. The first and
last knots in the smoothing function were placed at months 1 and
13 or decimal days 0 and 1, which causes the spline to smooth
continuously from December to January. The remaining knots were
placed with even spacing by the model fitting algorithm.

2.2.2. Distributions
The distribution for the residuals is εiðjÞ � Nð0; s2LðiÞÞ, where the

subscripts in parenthesis are used in Equation (2) but not Equation
(1). The L s are defined to accommodate any autocorrelation or
heteroscedasticity, and the subscript i in the second distribution
indicates that the residuals are independent from values at other
oyster beds. For both the USGS and HSRL salinity data, the variance
was assumed to depend on a power function of streamflow such
that varðεiðjÞÞ ¼ s2

���QiðjÞ
���2d (Pinheiro and Bates, 2000). Other vari-

ance structures including homoscedastic errors, variances related
to the fitted values, and exponential relationships were also
considered. Experiments indicated that the power function of
streamflow produced the highest likelihoods for most models.
Furthermore, not including the fitted values in the variance func-
tion allows the use of exact procedures to find the parameter
d (Pinheiro and Bates, 2000).

In addition to heteroscedasticity, temporal autocorrelation is
also present in the USGS data. This autocorrelation is a common
problem in hydrological and climatological time series (Hirsch and
Slack, 1984). A first-order autoregressive (AR1) error process was
used to model the temporal autocorrelation in the USGS data. The
lag-1 correlationwas estimated by the model fitting algorithm. The
USGS locations are modeled separately, so spatial autocorrelation is
not an issue. There was typically enough time between successive
observations in the HSRL data that both spatial and temporal
autocorrelation were assumed negligible.

Additive mixed models assume a Gaussian distribution for the
errors; however, the errors may be modeled as following another
distribution in the exponential family, such as the gamma or
Poisson distribution. In this case, the model is known as a gener-
alized additive mixed model. The gamma distribution may seem
like the best option for modeling salinity since both are positive
definite. However, tests comparing the model performances and
the distributions of the residuals indicated that the standard ad-
ditive mixed model with a Gaussian distributionwas by far the best
choice for modeling salinity. One consequence of this choice is that
the models can predict negative salinities. In practice, however, this
rarely occurred.

2.2.3. Fitting and testing
Additive mixed models can be fit using maximum likelihood

estimation (MLE) methods (Wood, 2006). However, MLE generally
produces biased estimates of variance. A modification to MLE
known as restricted maximum likelihood estimation (REML) solves
this problem.

However, REML makes model selection difficult because two
models that have been fit with REML can only be compared under
certain restrictive conditions. Mixed models contain terms for both
fixed effects and random effects. Fixed effects are model parame-
ters that apply to the entire population being sampled. Random
effects apply to an individual unit or group that was randomly
taken from the population. For example, the unique intercept term
bi in Equation (2) is a random effect because the value for bi is
different for each oyster bed and is assumed to be drawn from a
random normal distribution. The term b1 is a fixed effect because it
applies to all observations from all oyster beds. The smooth terms
such as fQ are split into both fixed and random effects (Lin and
Zhang, 1999; Wood, 2004). REML works by removing the fixed ef-
fects from the likelihood maximization procedure (Corbeil and
Searle, 1976). As a result, it is only possible to compare models fit
with REML when the fixed effects are identical (Pinheiro and Bates,
2000; Wood, 2006). To resolve this issue, the significance of the
model terms was tested using models fit with MLE. The resulting
best model was then re-fit with REML to produce the final results.

Likelihood ratio tests were applied to determine the significance
of the fixed effects. The likelihood ratio test works under the
assumption that twice the difference of the log-likelihoods of two
nested models has a known c2 distribution (Wilks, 1938; Pinheiro
and Bates, 2000).

Model selection for the unique intercept (bi in Equation (2)) and
other random effects, such as a separate trend for each oyster bed,
was performed by including all possible fixed effects, fitting with
REML, and using likelihood ratio tests to determine which random
effects to include. Finally, the fixed effects were tested using MLE as
above and the final best model was re-fit using REML. These
methods indicated that a random intercept for each oyster bed
significantly improved the model. However, other random effects
did not improve the model.

The models were fit and tested using the mgcv version 1.7e28
package of the open source statistical software R (Wood, 2014).
Details of the methods used in this software are described in Wood
(2003, 2004, 2006).

3. Results

3.1. Basic models

Streamflow is often one of the primary influences on estuarine
salinity. In the Delaware Estuary, the annual cycles of salinity and
streamflow are clearly opposed (Fig. 2); maximum streamflow and
minimum salinity both occur in April, and minimum streamflow in
August precedes peak salinity in September and October. Similarly,
salinity was unusually high during the drought of the mid 1960s
and subsequently declined during the period of increased



Fig. 5. Seasonal variations in salinity. For the oyster beds, the smooth plots the rela-
tionship between salinity and decimal day of year (term fDD in Equation (2)). For the
USGS data, the smooths show the relationships between salinity and month of year
(term fM in Equation (1)). The gray shaded regions indicate ±2 standard errors.
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precipitation and streamflow in the 1970s. There is also a modest
downward trend in salinity after 1980 corresponding to a moderate
increase in streamflow during this time.

Equations (1) and (2) model this relationship between salinity
and streamflow. The fitted smooth functions of streamflow fQ,
without the optional term b1Xi(j), are shown in Fig. 4. Actual salinity
predictions from the model are derived by adding the values from
this smooth function with the intercept and other terms in the
model; therefore, these smooth functions of streamflow represent
only the modeled influence of streamflow on salinity. Smooth
terms such as fQ are specified to have an expected value of 0, so
negative values for the smooths are entirely valid. The smooths
show that salinity and streamflow are negatively correlated, as
expected. The magnitude of the marginal response of salinity to
streamflow is larger under low-flow conditions.

The residual seasonal variation included in the model appears
similar at all locations (Fig. 5). In general, after accounting for the
influence of streamflow, salinity is lowest in May and June and
highest in October and November. These residual seasonal terms
are not significantly changed after including the additional model
terms that are discussed in the following paragraphs.

The basic terms included in the oyster bed model also give the
response to tidal water level and the axial and lateral salinity gra-
dients. Likelihood ratio tests indicated that all three terms
improved the model. The response of salinity to tidal water level,
b2, is 1.1 m�1, which is smaller than the response to subtidal
(monthly-mean) sea level (presented later in Table 2). This is
reasonable, since the estuarine salinity field may not fully adjust to
sea level over the tidal time scale but should over the monthly time
scale. The axial salinity gradient (b3¼�0.28 km�1) and lateral
salinity gradient (b4¼ 0.35 km�1) are similar in the oyster bed re-
gion. The axial gradient of bottom salinity is slightly weaker than
the �0.337 km�1 calculated by Garvine et al. (1992) from five
bottom and near-surface monitoring stations spread throughout
Fig. 4. Relationship between streamflow and salinity. The black lines denote term fQ in
Equations (1) and (2). The shaded gray regions indicate ±2 standard errors.
the estuary. The lateral distance was defined as positive away from
the eastern shore of the bay, so the positive lateral gradient in-
dicates that salinity increases away from the eastern beds and to-
wards the center of the bay, which is consistent with Wong (1994).

The adjusted R2 value for the model fit to Reedy Island salinity is
0.73. Farther down the estuary, the adjusted R2 value for the fit to
salinity is 0.57 at Ship John Shoal and 0.83 at the oyster beds. Up-
stream at Chester, Fort Mifflin, and Ben Franklin bridge, the
adjusted R2 values are 0.18, 0.60, and 0.55 respectively. The reduced
performance at these upstream locations is a result of higher
variability of salinity and the weaker relationship between salinity
and streamflow under low-flow conditions. As a result of the higher
variability and weaker relationship, streamflow has less predictive
power under low-flow conditions, and any statistical model based
on streamflow would have reduced performance. The high salinity
variability may simply be the result of some sort of random or in-
ternal variability, or a process that happens at longer or shorter
time scales than are captured by the model. It is also possible that
extremely low flows amplify the effect of sea level, wind, and other
factors. For example, although the axial salinity gradient in the
estuary is mostly constant, salinity levels far upstream exhibit a
Table 2
Trends in streamflow-adjusted salinity and response of salinity to sea level. Bold
indicates results that are significant at the 95% confidence level.

Location Trend (decade�1) Response to sea level (m�1)

Ben Franklin Bridge 8.9� 10�4 (0.30) 3.8� 10�3 (0.68)
Fort Mifflin 2.5� 10�3 (0.31) 3.3� 10�2 (0.17)
Chester 2.1� 10�4 (0.99) 2.6� 10�2 (0.30)
Reedy Island 0.17 (1.4� 10�2) 3.3 (5.2� 10�5)
Ship John Shoal 1.6 (5.6� 10�2) 4.4 (3.4� 10�2)
Oyster beds 0.38 (<1.0� 10�5) 2.5 (6.2� 10�3)
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more gradual transition to riverine salinity (Ketchum, 1952). Under
low-flow conditions, the region of gradual transition could shift
farther upstream, increasing the axial salinity gradient in this re-
gion and possibly the effect of sea level, wind, and other factors. The
model performance could be improved if these variables had a
predictable change in effect under low-flow conditions or if there
was some other variable that is important only under low-flow
conditions and could explain this variability. However, we did not
find any variable that did. Finally, we note that the poor perfor-
mance at Chester may also be caused by the gauge's proximity to
Chester Creek or by possible freshwater release or removal by
nearby manufacturing facilities.

At all locations, the models often, but not always, underpredict
when salinity is high. This can be seen in Fig. 6, which plots the
relationship between the observed and modeled salinity. One
concern was that this bias could have been caused by the use of
smoothing splines to approximate the sharply nonlinear response
to streamflow under low-flow conditions. However, experimental
results described in the discussion indicated that the modeling
methods were reasonable even when approximating exponentials.
Furthermore, other smoothing methods did not perform better at
correctly predicting high salinities.

Long-term trends are also present in themodel residuals (Fig. 7).
This suggests that after accounting for streamflow, salinity in the
estuary has been increasing with time. To test the significance of
these trends, a parametric time term was added to Equations (1)
and (2). The resulting trends and p-values are provided in
Fig. 6. The difference between modeled and observed salinity versus modeled salinity. Mod
line marks where there is no difference between observed and modeled values. The sign has
higher than the observed salinity and negative values indicate that the model-predicted sa
Table 2. Significant upward trends in streamflow-adjusted salinity
are found at the oyster beds and Reedy Island. Upward trends are
also found at all of the remaining locations; however, none of these
trends are significantly different from zero at the 95% confidence
level. The lack of statistical significance may reflect the short
observational records, particularly at Ship John Shoal and Fort
Mifflin, and the possibility of higher variability due to the proximity
of the upstream locations (Chester, Fort Mifflin, and Ben Franklin
Bridge) to the salt front. It should also be noted that each location
covers slightly different time periods.
3.2. Effect of sea level

Over the last century, sea level along the East Coast of the United
States has risen significantly, and levels have been increasing faster
than the global average along much of the coast (Sallenger et al.,
2012). Locally, since measurements began in 1911, sea level at
Atlantic City, NJ has risen at a rate of 0.41 m per century. The long-
term trend has been nearly linear, although some short-term var-
iations are present. Is sea-level rise responsible for the increasing
trends in streamflow-adjusted salinity?

This hypothesis was tested by including a parametric term for
sea level in Equations (1) and (2) (and removing the time term
previously included). Note that high and low tide water level,
without sea-level rise or subtidal fluctuations, is already included
in the oyster bed model to allow observations from both high and
low tide to be combined. The resulting coefficients for the
eled salinity values are from Equations (1) and (2) without the optional term. The black
been configured so that positive values indicate that the model-predicted salinity was
linity was less than the observed salinity.



Fig. 7. Timeseries of model residuals. The gray dots are the raw residuals (observed
minus modeled salinity) for the models in Equations (1) and (2) without the optional
term. The black lines show the trends that result when a term for time is added to
these models.

Table 3
Responses of salinity to alongshorewind stress, along-estuary wind stress, and wind
stress magnitude. p-values are indicated in parenthesis. Bold indicates locations
where the results are significant at the 95% confidence level. Alongshore wind stress
is defined as positive when it has a south-southwest to north-northeast component.
Negative slopes indicate that salinity is lowered when the alongshore wind stress is
from this direction. Along-estuary wind stress is defined as positive when it has a
component pointing upstream perpendicular to the alongshore direction. Units for
all values are psu per N m�2.

Location Alongshore Along-estuary Magnitude

Ben Franklin Bridge 7.1� 10�2 (0.41) 0.11 (0.14) 0.11 (0.11)
Fort Mifflin �7.3� 10�2 (0.67) 0.65 (8.6� 10�5) 0.21 (0.18)
Chester �0.33 (0.31) 0.51 (9.2� 10�2) 0.13 (0.55)
Reedy Island ¡23 (2.0� 10�4) 6.5 (0.25) 11.0 (4.8� 10�2)
Ship John Shoal ¡49 (1.2� 10�2) �3.6 (0.72) 4.4 (0.74)
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sensitivity of salinity to sea level are provided in Table 2. These
results indicate that there is a significant correlation between sea
level and estuarine salinity, with salinity increasing by as much as
4.4 per meter of sea-level rise.

Due to the significant upward trends in streamflow-adjusted
salinity already detected, any time series with a significant trend
would likely be modeled as having a significant effect on salinity.
However, the results here are reasonable, as there is a physical
reason to expect increasing salinity with increasing sea level.
Adjusted R2 values for the models with the time termwere similar
to those with the sea-level term (0.54 vs. 0.55, 0.60 vs. 0.61, 0.17 vs.
0.17, 0.75 vs. 0.75, 0.62 vs. 0.65, 0.84 vs. 0.83 in order of distance
downstream). Themodel likelihoods (as well as Akaike information
criterion values) were slightly better for all models with the sea-
level term except at the oyster beds. Finally, several studies
examined in the discussion using idealized and dynamical models
have arrived at similar sensitivities.

Idealized models with exponentially decreasing estuary widths
predict that the response of salinity to sea level is not a simple
linear function but rather a power function (Savenije, 1993; Hilton
et al., 2008). A simple way of testing this non-parametrically is to
replace the parametric relationship between salinity and sea level
with a smooth term. Likelihood ratios indicated that the null model
with a linear response to sea level was never rejected. This does not
necessarily mean that the response of salinity to sea level is linear;
however, it does indicate that any other form of response is not
detected in the current data.
3.3. Effect of winds

In addition to streamflow and sea level, wind stress may affect
the salinity of the estuary by generating turbulent mixing and
estuary-shelf exchanges. Because of the interaction between wind
stress and sea level, the sea-level terms in the previous models
were dropped and replaced with terms for wind stress. The indi-
vidual wind stress components (alongshore, along-estuary, and
magnitude) were also tested separately to avoid any problems
caused by correlations between the components. Parametric terms
were used to represent all of thewind stress terms because, like sea
level, smooth relationships between salinity and wind stress were
never significantly better. The results are presented in Table 3.

Alongshore wind stress from the south-southwest to the north-
northeast should induce Ekman transport away from the estuary
and lower sea level and salinity. Wind stress from the opposite
direction should have the opposite effect. The effect of low-
frequency alongshore wind stress variability on subtidal sea level
and circulation has been observed in the Delaware Estuary (Wong
and Moses-Hall, 1998). Using generalized least squares (Pinheiro
and Bates, 2000) with an AR(2) error covariance, there is also a
significant negative correlation between sea level and alongshore
wind stress in the data used in this study (p < 1� 10�5). The
resulting effects of wind stress on salinity were detected at Reedy
Island and Ship John Shoal (Table 3). The values at the remaining
locations were not significantly different from zero.

Along-estuary wind stress may also affect salinity and sea level
by directly inducing set-up inside the estuary. However, with the
alongshore component in the previous regression models replaced
by the along-estuary component, the effects of along-estuary wind
stress were only significant at Fort Mifflin. This result is supported
by Wong and Moses-Hall (1998), who found that although local
wind effects have some influence on subtidal currents in the upper
estuary, there is little coherence between subtidal current and
surface salinity in this region. Similarly, Garvine (1985) determined
that subtidal sea level and barotropic current fluctuations should
primarily be produced by remote wind effects.

Themagnitude of wind stressmay also have an effect on salinity,
for example by increasing or decreasing vertical mixing in the es-
tuary. The Delaware Estuary has strong tides and is traditionally
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considered weakly to partially stratified (Wong and Münchow,
1995; Wong, 1995), meaning any effect of wind mixing should be
relatively small. However, strong vertical salinity stratification can
occur, particularly during spring (Sharp et al., 1986). To test this
influence, the along-estuary component in the previous regression
model was replaced with a component for wind stress magnitude.
A significant relationship was found at Reedy Island. The slopes at
Reedy Island and the remaining insignificant locations were all
positive, consistent with the hypothesis that higher winds will in-
crease surface salinity by increasing vertical mixing.

3.4. Effect of oceanic salinity

Finally, variability in oceanic salinity may also influence the
salinity of the estuary. When a parametric term for the Gulf Stream
Index is included in Equation (1), the term is significant only at
Reedy Island (b1¼0.10,p¼ 1.8� 10�2). The sign of the slope b is
positive, consistent with the hypothesis that a northward
displacement of the Gulf Stream will increase oceanic salinity
offshore on the Mid-Atlantic Bight and drive more saline water into
the estuary. The terms are also positive at all of the remaining USGS
locations except Chester; however, the terms are not statistically
significant. This does not necessarily disprove the influence of
oceanic salinity on estuarine salinity. Because the Gulf Stream Index
is a highly variable time series, the statistical models may have
difficulty identifying any relationship between oceanic and estua-
rine salinity. In addition, there could be a lag betweenmovement of
the Gulf Stream and any associated changes in estuarine salinity, or
the influence of oceanic salinity could occur over longer time scales
that would not necessarily be detected by examining monthly
averages.

4. Discussion

4.1. Sea level impact on estuarine salinity

Assuming that the statistical models are reliable and the effects
of unmodeled influences are negligible, the results show that a
long-term upward trend in salinity is present after accounting for
the effects of streamflow. This trend provides evidence that rising
sea levels may be causing salinity to rise.

If rising sea levels are in fact causing salinity to increase, salinity
is likely to increase significantly in the future as a result of
continued and accelerated sea-level rise. The Intergovernmental
Panel on Climate Changes's (IPCC's) Fifth Assessment Report (AR5)
predicts that global mean sea level will rise by 0.38e0.73 m during
the twenty-first century under the RCP6.0 emissions scenario
(Church et al., 2013). Other studies suggest that the AR5 may un-
derestimate sea-level rise, with global mean sea level possibly
rising 1 m ormore above the 1990mean by 2100 (Rahmstorf, 2007;
Vermeer and Rahmstorf, 2009). Using statistical models, Vermeer
and Rahmstorf (2009) project that global mean sea level will in-
crease 1.24 m above the 1990 mean level by the end of the twenty-
first century under the A2 emissions scenario (the models in this
study range from 0.98 to 1.55 m). Using the modeled sensitivity to
sea level of 3.3m�1 at Reedy Island, this amounts to a 4.1 increase in
mean salinity by the end of the twenty-first century with a range of
3.2e5.1. If streamflow is unchanged, this will raise themean salinity
at Reedy Island to 8.5 (7.6e9.5). Using the possibly conservative
IPCC estimates of sea-level rise still results in an increase of 1.3e2.4,
bringing the mean salinity at Reedy Island to 5.7e6.8.

Statistically identifying sea-level rise as the cause of increasing
salinity is difficult, since statistical models would correlate any time
series with a large upward trend to the increasing salinity in the
estuary. Other influences that are difficult to measure, such as
dredging, could have also increased salinity in the estuary. How-
ever, results from other models and studies of the effect of sea-level
rise on salinity in the Mid-Atlantic region are generally similar to
the results obtained from the statistical models in this study.

Using numerical models, Hull and Tortoriello (1979) determined
that a sea-level rise of 0.13 m resulted in a maximum increase in
salinity of 0.38 near Reedy Island. This translates to a 2.9 m�1

sensitivity of salinity to sea level, which is slightly less than the
3.3 m�1 determined using the statistical models in this study. At a
location 23 km upstream of Reedy Island, the U.S. Army Corps of
Engineers Philadelphia District (1997) found that a 0.3-m increase
in sea level resulted in a 0.3 increase in surface salinity, which
translates to a sensitivity of 1.0 m�1. However, they also found that
bottom salinity in the lower oyster bed area would actually
decrease by 0.2 for a 0.3-m sea-level rise (a sensitivity of�0.7 m�1),
which contradicts the 2.5 m�1 sensitivity determined by the sta-
tistical models in this study. The Army Corps hypothesized that the
negative sensitivity may be a result of flow diversions such as the
C&D canal linking the Chesapeake and Delaware Bays; flow di-
versions may have been introduced in the model by their approx-
imation of sea-level rise in the Chesapeake. In the area upstream of
Reedy Island, Kim and Johnson (2007) used numerical models to
simulate the response of salinity under 1965 flow conditions and
1996 consumptive use (a worst-case scenario) to a 0.17-m sea-level
rise. They found that chlorinity would increase by 0.14 ppt at
Chester and 7 ppm at Ben Franklin Bridge. When converted to
salinity in parts per thousand (which is nearly equivalent to the
practical salinity unit used in this paper), this results in a sensitivity
of 1.5 ppt m�1 at Chester and 7.1� 10�2 ppt m�1 at Ben Franklin
Bridge. This is much larger than the sensitivities identified by the
statistical models in this study, which may be a result of the
imposed low-flow conditions.

Savenije (1993) developed a one-dimensional model for ideal-
ized estuaries. The model assumes an estuary width and cross-
sectional area that decrease exponentially upstream, assumes
steady state at high water slack, and models dispersion using an
empirical relation. Since the model is one-dimensional, the model
salinity does not vary with depth. This may still be a reasonable
first-order assumption, particularly since the Delaware Estuary is
generally well-mixed. To compare this model with the statistical
models in this study, we ran the calculations with the mean value
of streamflow at Trenton during this study (349 m3 s�1), a mean
estuary depth of 7.7 m approximated from the National Geophys-
ical Data Center's Coastal Relief Model, and with the remaining
model parameters as defined by Savenije (1993). The results
indicate that the Savenije (1993) model-predicted salinity closely
matches the observed salinity values (Fig. 8a). The response of
salinity to 1 m of sea-level rise is similar to that predicted by the
statistical models (Fig. 8b). Both models project the largest in-
crease in the middle of the estuary and only minor changes farther
upstream.

Recent studies have also identified the implications of sea-level
rise for salinity in other estuaries. In the nearby Chesapeake Bay,
Hilton et al. (2008) applied statistical and numerical models and
found that salinity has a sensitivity to sea level of 2e7 m�1, which is
similar to the 2.5e4.4 m�1 sensitivity identified in this study.
Similarly, using a 3D numerical model, Hong and Shen (2012)
determined that the mean salinity of the Chesapeake Bay would
increase by 1.2e2.0 if sea level rises by 1 m. With the same nu-
merical model, Rice et al. (2012) found that, during typical flow
conditions, a 1-m sea-level rise would increase salinity by nearly 10
in the James River at themouth of the Chickahominy River. During a
simulated dry year, a 1-m sea-level rise would result in a salinity
increase of slightly more than 4, which is more in line with the
estimates by Hilton et al. (2008).



Fig. 8. a: Comparison between observed salinity and salinity predicted by the Savenije
(1993) 1D model. The shapes are the observed salinity, and the lines denote the 1D
model predictions. The distance for the oyster beds is determined by the mean dis-
tance weighted by number of observations. b: Projections of salinity change in
response to 1 m of sea-level rise under current mean streamflow. Shapes are from the
statistical models developed in this work. Solid lines are from the Savenije (1993) 1D
model. c: Projections of salinity change in response to a 35% increase or decrease in
streamflow under current mean sea levels. As before, solid lines are from the Savenije
(1993) 1D model, and shapes are from the statistical models developed in this work.
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4.2. Delaware Estuary salinity response to streamflow

Changes in streamflow are more difficult to project. In the
Eastern United States, precipitation primarily determines
streamflow. Many studies have projected that precipitation
amounts will increase, both globally (Collins et al., 2013) and over
the Eastern United States (Najjar et al., 2009). However, land use
changes, reduced plant transpiration as a result of increased CO2,
and increased evaporation as a result of higher temperatures
(Krakauer and Fung, 2008) will also influence streamflow change.
Using global climate models, Najjar et al. (2009) projected that
precipitation changes will cause streamflows in the Mid-Atlantic
region to change by 15 ± 20% by the end of the twenty-first cen-
tury under the A2 emissions scenario. However, Najjar et al.
(2009) also found that warming-induced evapotranspiration
changes could cause a 15e40% decrease in streamflows in the
region. If sea level is held constant at the 1964e2012 mean, the
statistical model for Reedy Island predicts that salinity would
increase from the 1964e2012 mean value of 4.4e5.5 for a 35%
decrease in mean streamflow or decrease to 3.7 for a 35% increase
in mean streamflow. Thus, only an extreme streamflow increase
will be able to offset the salinity change caused by a moderate 1 m
sea-level rise.

The 1Dmodel of Savenije (1993) also predicts a similar response
of salinity to streamflow change (Fig. 8c). As a result of the quasi-
exponential shape of the salinity-streamflow curve, salinity
changes more in response to an increase of streamflow than it does
for an equal decrease of streamflow. The 1D model predicts a larger
response to streamflow change than the statistical models predict
at Reedy Island and downstream; however, 1D models are known
to overpredict the sensitivity of salinity to streamflow in the
Delaware Estuary (Garvine et al., 1992).

4.3. Limitations of statistical models

Although the statistical models generally performed well and
produced results that make sense from a physical standpoint and
are reasonably close to other studies, the models have some
shortcomings. One issue is that the models often underpredicted
extremely high salinities. It was thought that this issue may have
reflected an inability of the smoothing splines to fit the roughly
exponential salinity-streamflow relationship. This hypothesis was
tested in three steps. First, simulations were conducted in which
exponential curves were created from the observed salinity-
streamflow relationship. For example, a curve was created with
shape S¼ a� exp(Q/b), where the coefficients a and b were deter-
mined using nonlinear least squares and observed S and Q values.
Next, various levels of random noise (including no noise) were
added to these exponential curves. Finally, the ability of the AMM
smoothing splines to fit the exponential curves with noise was
tested. In all cases, the splines were remarkably close to the actual
exponentials. In addition, using other smoothing splines, increasing
the maximum degrees of freedom in the splines, and manually
setting the spline knots did not improve the model fits. Specifying
exponential or power law relationships between salinity and
streamflow, rather than using smoothing functions, did not
improve the model results either. Since it otherwise appears to
work well, fitting splines to the raw quasi-exponential relationship
is advantageous over other methods for fitting quasi-exponential
curves, such as applying a log transform to salinity, because it
preserves the additive nature of the model.

Because there are seasonal patterns in many of the variables,
there is also the potential for some concurvity issues when
including multiple variables as predictors in the model (concurvity,
or approximate concurvity, refers to the presence of nonlinear re-
lationships between predictor variables (Buja et al., 1989; Ramsay
et al., 2003)). This issue may also arise from the time-of-year
term that accounts for residual seasonal variation. However, the
month term significantly improves the model fits, and excluding it
from the models results in seasonal patterns in the residuals.

The cause of this residual seasonal variation is unknown. One
possibility is seasonal patterns in evaporation and precipitation. In
the reanalysis data used to obtain wind speed and direction, the
evaporation rate is generally lowest in AprileJune (roughly 10 mm
per month) and highest in OctobereDecember (roughly 100 mm
per month). The seasonal pattern in precipitation is fairly small, so
the difference between precipitation and evaporation follows a
similar pattern, peaking at a net evaporation of 56 mm per month
in October and a net precipitation of 42 mm per month in March.
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This seasonal pattern in E� P should cause decreasing salinity in
MarcheJune and increasing salinity in OctobereDecember. Indeed,
this very closely matches the seasonal pattern in the model re-
siduals (Fig. 5).

However, the actual impact of evaporation is likely negligible. As
a simple example, consider a 1 m2 by 1-m deep volume of water at
the surface. After one month of evaporation and precipitation, the
salinity of this water is Sf ¼ Si

�
1þ mEP

mi�mEP

�
where Si and mi are the

salinity and total mass of water at the start of the month respec-
tively andmEP is the E� P accumulatedmass loss during themonth.
Applying this equation to each month of the NARR annual cycle of
E� P results in an approximate annual cycle of salinity resulting
solely from evaporation and precipitation. Using Reedy Island as an
example, with a starting January salinity of 4.0, results in an annual
cycle with a range of 0.66 compared to the range of the residual
cycle of roughly 3. Furthermore, this example assumes that there is
no mixing below 1 m throughout the year, which is extremely
unrealistic. Using the approximate mean depth of the estuary
(7.7 m) results in an annual cycle range of only 9.4� 10�2 at Reedy
Island.

Other factors that are difficult to model, such as changes in the
width and depth of the Delaware River navigation channel, may
also influence the salinity of the Delaware Estuary. However, the
width and depth of the navigation channel remained relatively
stable for the majority of the time period of this study. The project
to deepen the channel downstream of Philadelphia to a depth of 40
feet (approximately 12.2 m) was completed in 1942 (U.S. Army
Corps of Engineers Philadelphia District (2009)), and the autho-
rized depth remained at 40 feet until 1992. Walsh (2004) found
minor changes after the channel deepening, with primarily small-
scale dredging projects such as an extension of the Marcus Hook
anchorage in 1964 and minor accretion in the area surrounding the
channel from 1980e1987 to 2001. Although the authorized channel
depth was increased to 45 feet (approximately 13.7 m) in 1992,
work to deepen the channel to this depth did not begin until 2010,
and as of 2014 this work has not been completed. Numerical model
simulations performed by Kim and Johnson (2007) predicted that
the increase in channel depth from 40 feet to 45 feet would cause a
6.33% increase at Chester under 1965 drought conditions. The sta-
tistical models in this study did not detect a significant trend in
salinity at Chester, suggesting that the effect of the recent deep-
ening has not influenced long-term salinity trends. By 2040, Kim
and Johnson (2007) projects that sea-level rise will have
increased salinity more than channel deepening and increased
water consumption combined.
5. Conclusion

After accounting for the effects of streamflow and seasonal
variations, salinity in many areas of the Delaware Estuary is
increasing. This increase may be caused by sea-level rise. If the
future response of salinity to sea level matches the modeled past
response, salinity will increase significantly in the future as sea
level continues to rise. Any increase in streamflow caused by
warming will likely be unable to balance the increase in salinity
caused by sea-level rise.

Although the statistical models used in this study appear to have
worked well, additional investigation into the ability of the
methods to handle the salinity-streamflow relationship may be
beneficial. In addition, the comparison of the statistical model re-
sults with results from numerical models would benefit from
modern numerical model simulations forced with the full range of
possible streamflow conditions (rather than only low-flow
conditions).
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