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Causes of di�erences in model and satellite
tropospheric warming rates
Benjamin D. Santer1*, John C. Fyfe2, Giuliana Pallotta1, Gregory M. Flato2, Gerald A. Meehl3,
Matthew H. England4, Ed Hawkins5, Michael E. Mann6, Je�rey F. Painter1, Céline Bonfils1,
Ivana Cvijanovic1, Carl Mears7, Frank J. Wentz7, Stephen Po-Chedley1, Qiang Fu8 and Cheng-Zhi Zou9

In the early twenty-first century, satellite-derived tropospheric warming trends were generally smaller than trends estimated
from a large multi-model ensemble. Because observations and coupled model simulations do not have the same phasing
of natural internal variability, such decadal di�erences in simulated and observed warming rates invariably occur. Here we
analyse global-mean tropospheric temperatures from satellites and climate model simulations to examine whether warming
rate di�erences over the satellite era can be explained by internal climate variability alone.We find that in the last two decades
of the twentieth century, di�erences between modelled and observed tropospheric temperature trends are broadly consistent
with internal variability. Over most of the early twenty-first century, however, model tropospheric warming is substantially
larger than observed; warming rate di�erences are generally outside the range of trends arising from internal variability. The
probability that multi-decadal internal variability fully explains the asymmetry between the late twentieth and early twenty-
first century results is low (between zero and about 9%). It is also unlikely that this asymmetry is due to the combined e�ects
of internal variability and amodel error in climate sensitivity.We conclude that model overestimation of tropospheric warming
in the early twenty-first century is partly due to systematic deficiencies in some of the post-2000 external forcings used in
the model simulations.

TheFifthAssessmentReport of the Intergovernmental Panel on
Climate Change (IPCC) contained prominent discussion of
differences betweenwarming rates in observations andmodel

simulations1,2. The focus of the discussion was on two issues: the
causes of a putative ‘slowdown’ in observed surface and tropospheric
warming during the early twenty-first century, and the reasons for
the inability of most climate model simulations to capture this
behaviour. The IPCC defined the ‘slowdown’ as a substantially
reduced surface warming trend over 1998 to 2012 relative to the
long-term warming over 1951 to 20122.

Since publication of the Fifth Assessment Report, at least three
different interpretations of the ‘slowdown’ have emerged. One
interpretation is that this phenomenon is largely an artefact of
residual errors in surface temperature data sets3–5. A second school
of thought holds that the ‘slowdown’ is primarily a routine decadal
fluctuation in temperature6, and is not statistically distinguishable
from previous manifestations of internal variability7–9. A third
interpretation is that the ‘slowdown’ is attributable to the combined
effects of different modes of internal variability10–14 and multiple
external forcings15–17.

It is of interest to examine some implications of these
schools of thought. If the reduction in early twenty-first century
warming is mainly an artefact of errors in surface temperature
data3,5, independent, satellite-based measurements of tropospheric
temperature should show little evidence of a recent ‘slowdown’

in warming—consistent with corrected surface results. Current
satellite data sets, however, provide support for a reduced rate of
tropospheric warming in the early twenty-first century15,16,18.

If the ‘slowdown’ is predominantly a routine manifestation of
internal variability (and if model-based estimates of the forced
temperature signal and internal variability are realistic), then the
differences between simulated and observed warming rates arise
solely from different phasing of internal variability in ‘model world’
and in the real world. Under this interpretation, model-versus-
observed warming rate differences should be fully consistent with
internal variability.

In the third school of thought, both internal variability and
external forcing contribute to the ‘slowdown’2,19. The externally
forced contribution is due to the combined cooling effects of a
succession of moderate early twenty-first century eruptions15,20–24,
a long and anomalously low solar minimum during the last solar
cycle25, increased atmospheric burdens of anthropogenic sulfate
aerosols17,26, and a decrease in stratospheric water vapour27. There
are known systematic errors in these forcings in model simulations
performed in support of the IPCC Fifth Assessment Report2,17,19,20,27.
These errors arise in part because the simulations were performed
before more reliable estimates of early twenty-first century forcing
became available20,27. The net effect of the forcing errors is that
the simulations underestimate some of the cooling influences
contributing to the observed ‘slowdown’.
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We find that for tropospheric temperature, model-versus-

observed warming rate differences during most of the early twenty-
first century cannot be fully explained by natural internal variability
of the climate system. We consider whether this result provides
support for the third school of thought, or if it could be plausibly
explained by the combined effects of a model error in climate
sensitivity28 and different phasing ofmodelled and observed internal
variability10–14.

Our focus is on satellite- and model-based estimates of
tropospheric temperature. There are two reasons for this choice.
First, satellite tropospheric temperature measurements have time-
invariant, near-global coverage29–31. In contrast, there are large,
non-random temporal changes in spatial coverage in the observed
surface temperature data sets used in most ‘slowdown’ studies3,19,32.
Second, satellite tropospheric temperature data sets have been a key
component of recent claims that current climate models are too
sensitive (by a factor of three or more) to human-caused changes
in greenhouse gases28,33. Errors of this magnitude would diminish
confidence in model projections of future climate change. It is
therefore critically important to evaluate the validity of such claims.

Satellite and model temperature data
Our analysis primarily relies on satellite-based measurements of
global-scale changes in the temperature of the mid- to upper tro-
posphere (TMT). TMT data with near-global coverage are available
from three groups: Remote Sensing Systems (RSS)29, the Center for
Satellite Applications and Research (STAR)31, and the University of
Alabama at Huntsville (UAH)34. Older and more recent data set
versions are provided by each of these groups (see Methods). A
fourth group (the University of Washington; UW)30 produces TMT
data for a tropical domain. We briefly discuss both tropical TMT
changes and global-scale changes in the temperature of the lower
troposphere (TLT); the latter are provided by RSS and UAH only.

Model TMT data are from simulations of historical climate
change (HIST) and of twenty-first century climate change under
representative concentration pathway 8.5 (RCP8.5). These simula-
tions yield information on the tropospheric temperature response to
combined anthropogenic and natural external forcing. To compare
models and observations over the full satellite temperature record
(January 1979 to December 2016), HIST and RCP8.5 temperatures
were spliced together (‘HIST+8.5’). We also analyse control runs
with no changes in external forcings. Control runs are one of a num-
ber of different sources of information on natural internal climate
variability35–38. The HIST, RCP8.5 and control simulations were
performed under phase 5 of the Coupled Model Intercomparison
Project (CMIP5)39.

Because TMT receives a contribution from the cooling of the
stratosphere, a standard regression-based approach was employed
to correct for this influence40. Correction yields a more represen-
tative measure of bulk changes in tropospheric temperature41–43,
and was performed for both satellite and model TMT data. Further
information on the correction method and the satellite and model
temperature data is provided in theMethods and the Supplementary
Information.

Tropospheric temperature time series
Themulti-model average (MMA) of TMT changes in theHIST+8.5
simulations is smoother than any individual observational TMT
time series (see Fig. 1a). This difference in the amplitude of vari-
ability is expected12,15,44. In ‘free running’ simulations with coupled
models of the climate system, the phasing of internally generated
climate variability is random. By averaging over 49 realizations
of HIST+8.5 (performed with 37 different climate models), the
amplitude of random variability is reduced, more clearly revealing
the underlying temperature response to external forcings. The real
world, however, has only one sequence of internal climate variability.
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Figure 1 | Time series and di�erence series of simulated and observed
tropospheric temperature. a, Monthly mean TMT anomalies for the
456-month period from January 1979 to December 2016, spatially
averaged over 82.5◦ N–82.5◦ S and corrected for lower stratospheric
cooling40. Multi-model average (MMA) temperature data are from
HIST+8.5 simulations performed with 37 di�erent CMIP5 models; satellite
TMT data are for RSS version 4.0 (ref. 29). Model TMT data were
computed using vertical weighting functions that approximate the
satellite-based vertical sampling of the atmosphere54. b, Time series of
di�erences between the MMA and the RSS data shown in both raw form
and smoothed with a 12-month running mean. All anomalies are relative to
climatological monthly means calculated over January 1979 to December
2016. The vertical purple line is plotted at the time of the maximum
global-mean tropospheric warming during the 1997/98 El Niño. The vertical
green lines denote the eruption dates of El Chichón and Pinatubo. Trends in
the MMA and RSS over the full 456 months (the grey and pink lines in a)
are 0.291 and 0.199 ◦C per decade, respectively. The corresponding trends
over the early twenty-first century (January 2000 to December 2016) are
0.286 and 0.191 ◦C per decade.

Tropospheric warming is larger in the MMA than in the satellite
data45 (Fig. 1a,b). Another prominent feature of the observed results
is the large interannual temperature variability arising from the
internally generated El Niño/Southern Oscillation (ENSO). The
positive (El Niño) phase of ENSO causes short-term warming.
The large 1982/83 El Niño partly obscured cooling caused by the
1982 eruption of El Chichón. Because of the above-described noise
reduction arising from averaging over realizations and models,
the cooling signatures of El Chichón and Pinatubo are clearer
in the MMA15,46. Removal of temperature variability induced by
ENSO improves the agreement between volcanic cooling signals
in the MMA and in satellite tropospheric temperature data, but
does not fully explain mismatches between simulated and observed
tropospheric warming during the early twenty-first century15.

Significance of individual di�erence series trends
Next, we assess whether there are statistically significant differences
between tropospheric temperature changes in models and individ-
ual satellite temperature data sets. We operate on the difference
series 1Tf−o(k, t)=T f (t)−To(k, t), where k is an index over the
number of satellite data sets, t is an index over time (in months),
T f (t) is the MMA, and To(k, t) is an individual observational tem-
perature time series. The subscripts f and o denote results from
forced simulations and observations (see Methods and statistical
terminology section in the Supplementary Information).

Our significance testing procedure rests on two assumptions.
First, we assume that the MMA provides a credible, ‘noise free’
estimate of the true (but unknown) externally forced tropospheric
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temperature signal in the real world. If this assumption is valid,
the difference series 1Tf−o(k, t) should reflect the departures of
the observed realization of internal variability from the externally
forced signal. A second necessary assumption is that the CMIP5
control runs provide unbiased estimates of the amplitude, period,
and frequency of major modes of natural internal variability, par-
ticularly on interannual to multi-decadal timescales. Whether this
assumption is justifiable is discussed in the final section of the paper.

Under these two assumptions, we formulate the null hypothesis
that departures between the expected and observed tropospheric
temperature trends are consistent with internal climate noise. Rejec-
tion of the null hypothesis can have multiple explanations: system-
atic deficiencies in the external forcings applied in the HIST+8.5
simulations (such as neglect of moderate volcanic eruptions in
the early twenty-first century20–23), errors in the climate sensitivity
to external forcings, errors in the simulated spectrum of internal
variability, and residual inhomogeneities in the satellite temperature
measurements. These explanations are not mutually exclusive.

Most previous studies of differences between simulated and
observed warming rates in the early twenty-first century focused
on changes over specific periods3,16,47,48. The appropriateness of
different analysis period choices has been the subject of debate3,16,19.
To avoid such debate, we focus instead on L-year analysis timescales.
We consider five timescales here: L=10, 12, 14, 16, and 18 years. For
each timescale, an L-year ‘window’ is advanced by one month at a
time through 1Tf−o(k, t). A least-squares linear trend is calculated
for each individual window.

These maximally overlapping trends are plotted in the left-hand
column of Fig. 2. As expected, shorter L-year trends are noisier. For
example, 10-year windows ending close to the peak tropospheric
warming caused by the 1997/98ElNiñohave large negative trends in
the difference series. The use of longer trend-fitting periods damps
such end-point effects. Another noteworthy feature of Fig. 2 is that
most L-year windows which sample a substantial portion of the
early twenty-first century have large positive trends in 1Tf−o(k, t).
During this period, the average simulated warming is larger than
the tropospheric warming in each satellite data set. We use CMIP5
control runs to estimate the probability that trends in 1Tf−o(k, t)
are either unusually large or unusually small relative to unforced
temperature trends (see Methods). The resulting empirical p values
are plotted in the right-hand column of Fig. 2.

For most L-year trends ending after 2005, model-versus-
observed differences in tropospheric warming are significantly
larger (at the 10% level or better) than can be explained by natural
internal variability alone. This result holds for all six satellite
TMT data sets examined here. In contrast, L-year difference series
trends ending before 2005 are generally not significantly larger than
unforced TMT trends in the CMIP5 control runs. Qualitatively
similar results are obtained for TMT averaged over the tropics, as
well as for near-global changes in TLT (see Supplementary Figs 1
and 2, respectively).

In each panel in the right-hand column of Fig. 2, there are upper
and lower rejection regions for our stipulated null hypothesis. The
upper (lower) rejection regions are for significant negative (positive)
trends in1Tf−o(k, t). Under the null hypothesis, significant negative
and positive trends in1Tf−o(k, t) should be equally likely. We find,
however, that significant positive trends dominate. There is only one
small group of significant negative trends in1Tf−o(k, t)—the group
with end points close to the anomalous warmth of the 1997/98 El
Niño.

Other features of Fig. 2 are also of interest. Consider, for example,
the group of positive 10-year trends ending between approximately
1990 and 1993 (Fig. 2b). As noted above, El Chichón’s cooling signal
is larger and clearer in the MMA than in satellite TMT data, where
it was partly masked by the 1982/83 El Niño. This explains why
simulated TMT trends commencing close to the Chichón eruption

tend to show a larger post-eruption recovery (and larger warming)
than in the observations (Fig. 1a,b). The influence of the 1982/83 El
Niño on trends in1Tf−o(k, t) diminishes as the trend-fitting period
is increased.

The large tropospheric warming caused by the 2015/16 El Niño
event also has a pronounced effect. As shorter (10- to 12-year)
sliding windows sample this observed warming spike, the size
of trends in the 1Tf−o(k, t) difference series decreases, and p
values increase (Fig. 2b,d). However, as the longer 16- and 18-year
sliding windows approach the end of the TMT records, even the
anomalous observed warmth of late 2015 and early 2016 does not
negate the larger simulated warming during most of the ‘slowdown’
period—that is, trends in 1Tf−o(k, t) remain significantly larger
than unforced trends (Fig. 2h,j).

Figure 2 reveals large structural uncertainties in satellite TMT
data sets. These uncertainties reflect different choices in data set
construction, primarily related to the treatment of orbital drift, the
impact of orbital drift on sampling the diurnal cycle of atmospheric
temperature29–31,34,49, and the influence of instrument body tempera-
ture50,51. For example, versions 5.6 and 6.0 of the UAH TMT data set
have pronounced differences in tropospheric warming in the first
third of the satellite record. These differences (which are probably
due to an update in how the UAH group deals with instrument bias
correction) are large enough to lead to different decisions regarding
the statistical significance of initial trends in1Tf−o(k, t).

Our use of older and newer versions of satellite TMT records
highlights the evolutionary nature of these data sets. This
evolutionary understanding is not always well understood outside
of the scientific community33, which is why we choose to illustrate it
in Fig. 2. In the following analysis, however, we focus on newer data
set versions, which incorporate adjustments for recently identified
inhomogeneities, and are likely to be improved relative to earlier
data set versions29,30.

Significance of asymmetry statistics
The analysis in Fig. 2 focuses on the significance of individual trends
in1Tf−o(k, t). It does not consider whether overall asymmetries in
p values (such as the preponderance of significant positive trends
in the difference series) could be due to internal variability alone.
To address this question, we define three asymmetry statistics. The
first is γ1, which measures asymmetry in the numbers of significant
positive and significant negative trends in 1Tf−o(k, t). The second
and third are the γ2 and γ3 statistics, which provide information on
asymmetries in the temporal distribution of individual p values. To
calculate γ2 and γ3, we split the number of maximally overlapping
difference series trends into a first and second set of approximately
equal size (SET 1 and SET 2; see Fig. 2). This is done for each value of
the trend length L. The difference in the total number of significant
positive trends in SET 1 and SET 2 is γ2. The difference in ‘set-
average’ p values is γ3 (see Methods).

Figure 3 shows asymmetry statistics for the specific case of
maximally overlapping 10-year trends in 1Tf−o(k, t). The actual
values of γ1, γ2 and γ3 reveal a preponderance of significant
positive trends in1Tf−o(k, t), a larger number of significant positive
trends in SET 2 than in SET 1, and a sharp decrease in average
p values between SET 1 and SET 2 (see Fig. 3a,c,e, respectively).
We seek to estimate the likelihood that these actual values could
be due to multi-decadal internal variability alone. We refer to these
probabilities subsequently as pγ1 , pγ2 and pγ3 .

We begin by randomly selecting 5,000 surrogate ‘observed’
TMT time series from the CMIP5 control runs (see Methods
and Supplementary Figs 3 and 4). For each surrogate time series,
maximally overlapping L-year trends are comparedwith control run
distributions of unforced L-year trends; p values are calculated for
each individual trend, and asymmetry statistics are computed from
the p values. This procedure yields 5,000-member null distributions
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Figure 2 | Trends (left column) and trend significance (right column) for TMT di�erence series. The six di�erence series are for near-global averages of
corrected TMT, and were computed by subtracting each of the six individual satellite TMT records from the HIST+8.5 multi-model average TMT time
series (see Fig. 1). Maximally overlapping trends were fitted to each 456-month di�erence series. Results are for trend lengths of L= 10, 12, 14, 16, and 18
years; the overlap between successive L-year trends is by all but one month. The p values associated with each L-year di�erence series trend were obtained
by testing against multi-model distributions of unforced L-year TMT trends from 36 di�erent CMIP5 control runs. Results are plotted on the last month of
the trend-fitting period. Grey shading denotes the rejection region (at a stipulated 10% significance level) for the null hypothesis that the di�erence
between modelled and observed TMT trends is due to internal variability alone. Each panel in the right-hand column has a lower (upper) rejection region
for large positive (large negative) trends in the model-minus-observed di�erence series. The lower (upper) rejection region spans the p value range 0 to 0.1
(0.9 to 1.0). The y-axis range was extended to−0.06 to facilitate visual display of p values at or close to zero. To calculate the actual values of the γ2 and γ3
statistics in Fig. 3d and f, the maximally overlapping L-year trends were divided into two sets of approximately equal size (‘SET 1’ and ‘SET 2’; see Methods).
The dashed vertical lines in the panels of the right-hand column denote the final month of the last L-year trend in SET 1.

of γ1, γ2 and γ3. We know a priori that the statistical properties
of these distributions are solely influenced by natural internal
variability. Actual values of the asymmetry statistics are compared
with the null distributions to estimate pγ1 , pγ2 and pγ3 (see Fig. 3b,d,f).

Figure 4 summarizes these probability estimates. By averaging
over satellite data sets and analysis timescales, we obtain the overall
probabilities pγ1 , pγ2 and pγ3 (the magenta lines in Fig. 4). For the
statistic gauging the asymmetry in the numbers of positive and
negative difference series trends, pγ1≈0.005. On average, therefore,
there is only a 1 in 200 chance that the actual preponderance of

significant positive trends in 1Tf−o(k, t) could be due to internal
variability alone (Fig. 4a).

Consider next the temporal asymmetries between the properties
of difference series trends in SET 1 and SET 2 (Fig. 4b,c).
The likelihood is very small ( pγ2 ≈ 0.004) that random internal
fluctuations in climate could fully explain why the number of
significant positive trends in 1Tf−o(k, t) is larger in SET 2 than in
SET 1. For the third asymmetry statistic, there is less than a 1 in
10 chance (pγ3 ≈ 0.09) that the actual decline in average p values
between SET 1 and SET 2 is due to internal variability alone.
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Figure 3 | Asymmetries in the statistical significance of di�erences between modelled and observed tropospheric temperature trends. Results are for
maximally overlapping 10-year trends in near-global averages of corrected TMT. a-c, We calculate three asymmetry statistics. The first compares the
numbers of significant positive and negative trends in the1Tf−o(k, t) di�erence time series (a). Subtracting the number of significant negative trends from
the number of significant positive trends yields the γ1 statistic (b). The second statistic gauges asymmetry in the temporal distribution of positive trends in
the di�erence series (c). d-f, To quantify this asymmetry, we split the number of maximally overlapping 10-year trends into two sets of approximately equal
size. Trends sampling earlier (later) portions of the di�erence series are in SET1 (SET 2). The di�erence in the number of positive trends (SET1 minus SET2)
is the γ2 statistic (d). The third asymmetry statistic relies on the average p values of the individual trends in SET1 and SET2 (e). The di�erence between
these set-average p values is γ3 (f). The vertical lines in b,d and f are the actual values of γ1, γ2 and γ3. The grey histograms in b,d and f are null
distributions of the asymmetry statistics, which were generated using 5,000 realizations of surrogate observations (see Methods).

The probabilities in Fig. 4 are calculated separately for each asym-
metry statistic. We also considered the joint behaviour of γ1, γ2 and
γ3. We estimated pγ123 , the likelihood that internal variability alone
can simultaneously produce values of γ1, γ2 and γ3 that are more
extreme than their ‘satellite average’ actual values (the brown vertical
lines in Fig. 3b,d,f). The calculation of pγ123 was performed with the
same Monte Carlo-generated sampling distributions employed for
computing the individual probabilities pγ1 , pγ2 and pγ3 .

For each of the five analysis timescales, pγ123 is zero. This indicates
that in the 5,000 realizations of surrogate observations, there is not
a single realization in which multi-decadal internal variability can
simultaneously explain the actual asymmetries in the sign and tem-
poral distribution of significant trends in 1Tf−o(k, t). We caution,

however, that our estimate of pγ123 relies on non-independent in-
formation, and is therefore likely to be biased: γ1, γ2 and γ3 are all
calculated from the same set of p values for maximally overlapping
trends in 1Tf−o(k, t). Nevertheless, our findings suggest that there
is real value in considering the joint behaviour of γ1, γ2 and γ3,
and that each statistic provides some unique information about the
asymmetric distribution of difference series trends.

‘Perfect model’ analysis
It has been posited that the differences between modelled
and observed tropospheric warming rates are solely attributable
to a fundamental error in model sensitivity to anthropogenic
greenhouse gas increases28. Several aspects of our results cast
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Figure 4 | Overall statistical significance of the γ1, γ2 and γ3 asymmetry
statistics as a function of the analysis timescale and the satellite data
used to compute the ‘MMAminus observed’ di�erence time series.
a–c, Results are estimates of pγ1 (a), pγ2 (b) and pγ3 (c), the probabilities
that the actual value of the asymmetry statistic could have been obtained
by natural internal variability alone. The magenta lines are the averages
(over the three recent observational data sets and the five analysis
timescales) of pγ1 , pγ2 and pγ3 . Zero values of the probabilities are indicated
by coloured arrows. The y-axis range in a and b is substantially smaller than
in c. For further details refer to the caption of Fig. 3 and the Methods.

doubt on the ‘sensitivity error’ explanation. First, it is difficult
to understand why significant differences between modelled and
observed warming rates should be preferentially concentrated in
the early twenty-first century (see Fig. 2). A fundamental model
sensitivity error should bemanifestmore uniformly in time. Second,
a large sensitivity error should appear not only in trend behaviour,
but also in the response tomajor volcanic eruptions46. After removal
of ENSO variability, however, there are no large systematic model
errors in tropospheric cooling following the eruptions of El Chichón
in 1982 and Pinatubo in 199115.

Weperformed a ‘perfectmodel’ analysis to further investigate this
issue. We consider whether asymmetries in the sign and temporal
distribution of significant trends in 1Tf−o(k, t) could be solely
due to the combined effects of a large model sensitivity error and
different realizations of modelled and observed internal variability.
The ‘perfect model’ study emulates our analysis of the ‘MMA
minus satellite’ difference series. Now, however, the difference series
1Tf−f (j, t) is formed between the MMA and each individual
HIST+8.5 realization. We calculate ‘perfect model’ values of the γ1,
γ2 and γ3 statistics not only over 1979 to 2016, but also over three
earlier and two later 38-year analysis periods (see Methods).

For each asymmetry statistic, our ‘perfect model’ analysis yields
288 individual samples. This allows us to explore how γ1, γ2
and γ3 behave over a large range of inter-model differences
in climate sensitivity and phasing of low-frequency modes of
variability (Supplementary Fig. 5). Because consistently derived
estimates of Equilibrium Climate Sensitivity (ECS) are not available
for all CMIP5 models, we use a simple ECS proxy to study
relationships between climate sensitivity and the ‘perfect model’
values of γ1, γ2 and γ3. This proxy, 1T8.5, is the global-mean
change in corrected TMT over 2006 to 2095; 1T8.5 can be
calculated from all 37models for whichwe have RCP8.5 simulations
(see Supplementary Fig. 6).

Relationships between the ‘perfect model’ results and 1T8.5 are
shown in Supplementary Fig. 7. Results are partitioned into two
groups. The first group is for the three earlier analysis periods (1862
to 1899, 1900 to 1937, and 1940 to 1977). The second group contains
results for three later analysis periods (1979 to 2016, 2020 to 2057
and 2058 to 2095). For both groups of results, there are only weak
relationships between 1T8.5 and the statistics capturing temporal
asymmetries in trend behaviour (γ2 and γ3). In contrast, the statistic
reflecting asymmetries in trend sign (γ1) is highly correlated with
1T8.5, but only during the three later analysis periods.

The latter result has several explanations. First, inter-model dif-
ferences in ECS become more pronounced as greenhouse gas forc-
ing increases. These sensitivity differences are manifest as a time-
increasing spread in tropospheric warming rates (Supplementary
Fig. 5). As this spread grows in the twenty-first century, high-ECS
(low-ECS) models yield a larger number of significant negative
(positive) trends in the1Tf−f (j, t) difference series, and γ1 becomes
more highly correlated with 1T8.5. Second, as trends in 1Tf−f (j, t)
become larger, the correlation between 1T8.5 and γ1 is less affected
by natural decadal variability (Supplementary Fig. 8).

Despite the fact that our ‘perfect model’ analysis encompasses
a large range of inter-model climate sensitivity differences, the
average actual values of the three asymmetry statistics (the brown
vertical lines in Fig. 3b,d,f) remain unusual. For γ1, there are only
12 out of 288 cases where the ‘perfect model’ result exceeds the
actual value (Supplementary Fig. 9A). This yields a probability of
pγ1=0.042 that the actual γ1 value could be due to the combined
effects of amodel error in climate sensitivity and different phasing of
modelled and observed internal variability. For the statistics gauging
temporal asymmetry, this likelihood is even smaller: pγ2 = 0.010,
and pγ3=0.038 (Supplementary Fig. 9B,C). Finally, if the behaviour
of the asymmetry statistics is examined jointly rather individually,
there is only one out of 288 cases in which the ‘perfect model’ values
of γ1, γ2 and γ3 are simultaneously more extreme than the average
actual values, and pγ123=0.003.

In contrast, statistically unusual values of all three asymmetry
statistics could have been plausibly generated by the temporal
coincidence of multiple externally forced and internally generated
cooling influences in the early twenty-first century. Internally
driven contributions to the ‘warming slowdown’ arise from the
transition to a negative phase of the Interdecadal Pacific Oscillation
(IPO) in roughly 199911,13,16,52, and from changes in the phasing of
other internal variability modes14,53. Our statistical results are best
explained by the combined effects of these known phase changes
and by previously identified systematic model forcing errors in the
early twenty-first century2,17,20,25,27.

Reliability of model variability estimates
The credibility of our findings depends on the reliability of
model-based estimates of natural variability. If CMIP5 models
systematically underestimated the amplitude of tropospheric
temperature variability on 10- to 18-year timescales, it would
spuriously inflate the significance of individual difference series
trends. In previous work, we found no evidence of such a systematic

NATURE GEOSCIENCE | VOL 10 | JULY 2017 | www.nature.com/naturegeoscience

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

483

http://dx.doi.org/10.1038/ngeo2973
www.nature.com/naturegeoscience


ARTICLES NATURE GEOSCIENCE DOI: 10.1038/NGEO2973

low bias. On average, CMIP5 models slightly overestimated the
amplitude of decadal variability in TMT54.

It is more difficult to assess the credibility of our estimated
probabilities for the overall asymmetry statistics shown in Figs 3 and
4. Such an evaluation requires information on model performance
in capturing the ‘real-world’ variability of tropospheric temperature
on longer 30- to 40-year timescales. This information is not
directly available from relatively short satellite TMT records, and
must instead be inferred from other sources (see Supplementary
Information). Such indirect sources do not support a systematic
model underestimate of tropospheric temperature variability on 30-
to 40-year timescales55. Note also that a low bias in model estimates
of longer-timescale variability is physically inconsistent56 with the
above-mentioned claim of a high bias in model climate sensitivity28.

A related issue is the fidelity with which models capture the
periods of multi-decadal oscillations. Underestimates of these
periods could bias the sampling distributions of the γ2 and γ3
statistics, in both the ‘perfect model’ analysis and the analysis with
surrogate observations. There is some evidence that such an error
may exist for the IPO57, although it is difficult to make a reliable
assessment of this type of error given relatively short observational
record lengths and the obfuscating effects of low-frequency changes
in external forcings26.

In conclusion, the temporary ‘slowdown’ in warming in the
early twenty-first century has provided the scientific community
with a valuable opportunity to advance understanding of internal
variability and external forcing, and to develop improved climate
observations, forcing estimates, and model simulations. Further
work is necessary to reliably quantify the relative magnitudes
of the internally generated and externally forced components of
temperature change. It is also of interest to explore whether surface
temperature yields results consistent with those obtained here for
tropospheric temperature.

Our analysis is unlikely to reconcile divergent schools of thought
regarding the causes of differences between modelled and observed
warming rates in the early twenty-first century. However, we have
shown that each hypothesized cause may have a unique statistical
signature. These signatures should be exploited in improving
understanding. Although scientific discussion about the causes of
short-term differences between modelled and observed warming
rates is likely to continue19, this discussion does not cast doubt on
the reality of long-term anthropogenic warming.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Satellite temperature data.We use satellite estimates of tropospheric temperature
change produced by RSS29,58, STAR31,59,60, UAH34, and the University of Washington
(UW)30. The UW group supplies TMT data for the tropics only. All other groups
have near-global coverage of TMT measurements.

RSS, UAH, and STAR produce satellite measurements of the temperature of the
lower stratosphere (TLS), which is used to correct TMT for the influence it receives
from stratospheric cooling. Only RSS and UAH supply measurements of the
temperature of the lower troposphere (TLT), which we briefly discuss in the
main text.

UAH provides two different versions (5.6 and 6.0) of their TLS, TMT, and TLT
data sets. RSS currently has only one version (3.3) of their TLS and TLT data sets,
but two versions (3.3 and 4.0) of their TMT product. Two versions were available
for the STAR TLS and TMT data sets (3.0 and 4.0). At present, there is only one
version (1.0) of the UW tropical TMT data set.

Satellite data sets are in the form of monthly means on 2.5◦×2.5◦
latitude/longitude grids. Near-global averages of TMT and TLT were
calculated over areas of common coverage in the RSS, UAH, and STAR data sets
(82.5◦ N to 82.5◦ S for TMT, and 82.5◦ N to 70◦ S for TLT). All tropical averages are
over 20◦ N to 20◦ S. At the time this analysis was performed, satellite temperature
data were available for the 456-month period from January 1979 to
December 2016.

Method used for correcting TMT data. Trends in TMT estimated from
microwave sounders receive a substantial contribution from the cooling of the
lower stratosphere40,41,61,62. In ref. 40, a regression-based method was developed for
removing the bulk of this stratospheric cooling component of TMT. This method
has been validated with both observed and model atmospheric temperature
data41,63,64. Here, we refer to the corrected version of TMT as TMTcr. The main text
discusses corrected TMT only, and does not use the subscript cr to identify
corrected TMT.

For calculating tropical averages of TMTcr, ref. 61 used:

TMTcr=a24TMT+ (1−a24)TLS (1)

where a24=1.1. For the near-global domain considered here, lower stratospheric
cooling makes a larger contribution to TMT trends, so a24 is larger40,62. In refs 40
and 62, a24≈1.15 was applied directly to near-global averages of TMT and TLS.
Since we are performing corrections on local (grid-point) data, we used a24=1.1
between 30◦ N and 30◦ S, and a24=1.2 poleward of 30◦. This is approximately
equivalent to use of the a24=1.15 for globally averaged data.

Details of model output.We used model output from phase 5 of the Coupled
Model Intercomparison Project (CMIP5)39. The simulations analysed here were
contributed by 19 different research groups (see Supplementary Table 1). Our focus
was on three different types of numerical experiment: (1) simulations with
estimated historical changes in human and natural external forcings; (2)
simulations with twenty-first century changes in greenhouse gases and
anthropogenic aerosols prescribed according to the representative concentration
pathway 8.5 (RCP8.5), with radiative forcing of approximately 8.5Wm−2 in 2100,
eventually stabilizing at roughly 12Wm−2; and (3) pre-industrial control runs with
no changes in external influences on climate.

Most CMIP5 historical simulations end in December 2005. RCP8.5 simulations
were typically initiated from conditions of the climate system at the end of the
historical run. To avoid truncating comparisons between modelled and observed
atmospheric temperature trends in December 2005, we spliced together synthetic
satellite temperatures from the historical simulations and the RCP8.5 runs. Splicing
allows us to compare actual and synthetic temperature changes over the full
38-year length of the satellite record. We use the acronym ‘HIST+8.5’ to identify
these spliced simulations. Some issues related to splicing are discussed in the
Supplementary Information.

Supplementary Table 2 provides information on the external forcings in the
CMIP5 historical simulations. Details of the start dates, end dates, and lengths of
the historical integrations and RCP8.5 runs are given in Supplementary Table 3.
Corresponding information for the pre-industrial control runs is supplied in
Supplementary Table 4. In total, we analysed 49 individual HIST+8.5 realizations
performed with 37 different CMIP5 models. Our climate noise estimates rely on
pre-industrial control runs from 36 CMIP5 models.

Calculation of synthetic satellite temperatures.We use a local weighting function
method developed at RSS to calculate synthetic satellite temperatures from model
output54. At each model grid-point, simulated temperature profiles were convolved
with local weighting functions. The weights depend on the grid-point surface
pressure, the surface type (land or ocean), and the selected layer-average
temperature (TLS, TMT, or TLT).

Statistical analysis.We analyse the statistical significance of trends in the
temperature difference time series1Tf−o(k, t):

1Tf−o(k, t)=T f (t)−To(k, t) k=1, . . . ,Nobs; t=1, . . . ,Nt (2)

where T f (t) is the multi-model average atmospheric temperature time series
calculated from the forced HIST+8.5 simulations, and To(k, t) is the temperature
time series of the kth observational data set. Positive (negative) trends in
1Tf−o(k, t) indicate model-average tropospheric warming that is larger (smaller)
than observed. We seek to determine whether internal variability alone can explain
large differences between expected and observed warming rates (both positive
and negative).

All trends are calculated with monthly mean TMT or TLT data. Rather than
focusing on one specific period or timescale, we perform a comprehensive analysis
of difference series trends on timescales ranging from 10 to 18 years, in increments
of two years. These are typical record lengths used for study of the ‘warming
slowdown’ in the early twenty-first century16,19.

Our analysis relies on maximally overlapping trends. ‘Maximally overlapping’
indicates that an L-year sliding window is used for trend calculations. This window
advances in increments of one month until the end of the current window reaches
the final month of the1Tf−o(k, t) difference series. In calculating the HIST+8.5
multi-model average (MMA), we specify that j is a combined index over models
and HIST+8.5 realizations. The first averaging step is over HIST+8.5 realizations,
and the second is over models. For processing the pre-industrial control runs, each
model has only one control run, so j is an index over the number of models only.

Anomalies in the satellite observations and HIST+8.5 runs were defined
relative to climatological monthly means calculated over the 38-year period from
January 1979 to December 2016. Control run anomalies were defined relative to
climatological monthly means over the full length of each model’s control
integration.

Calculating p values for individual difference series trends.We assess trend
significance using weighted p values, which account for inter-model differences in
control run length45.

The weighted p value, pc(i,k, l)′, is defined as:

pc(i,k, l)′=
Nmodel∑
j=1

pc(i, j,k, l)/Nmodel

i=1, . . . ,Nf−o(l); j=1, . . . ,Nmodel;k=1, . . . ,Nobs; l=1, . . . ,NL (3)

where i is over Nf−o(l), the total number of maximally overlapping L-year trends in
1Tf−o(k, t); j is over Nmodel, the number of model control runs; k is over Nobs, the
total number of satellite data sets; and l is over NL, the number of values of the
trend length L. Here, Nf−o(l)=337 for 10-year (120-month) trends; Nmodel=36;
Nobs=6; and NL=5 (10, 12, 14, 16, and 18 years).

The individual pc(i, j,k, l) values for each model pre-industrial control run are
calculated as follows:

pc(i, j,k, l)=Kc(i, j,k, l)/Nc(j, l)

i=1, . . . ,Nf−o(l); j=1, . . . ,Nmodel;k=1, . . . ,Nobs; l=1, . . . ,NL (4)

where Kc(i, j,k, l) is the number of L-year trends in the jth pre-industrial control
run (for the lth value of the trend length L) that are larger than the current L-year
trend in1Tf−o(k, t). The sample size Nc(j, l) is the number of maximally
overlapping L-year trends in the jth control run.

Use of maximally overlapping trends has the advantage of reducing the impact
of seasonal and interannual noise on atmospheric temperature trends, both in the
1Tf−o(k, t) difference series and in the control runs. It has the disadvantage of
decreasing the statistical independence of trend samples. Non-independence of
samples is an important issue in formal statistical significance testing, but is not a
serious concern here. This is because pc(i,k, l)′ is not used as a basis for formal
statistical tests. Instead, it simply provides useful information on whether trends in
1Tf−o(k, t) are unusually large or small relative to model estimates of
unforced trends.

Calculating actual values of asymmetry statistics. The p values in the right-hand
column of Fig. 2 reveal pronounced asymmetries. Three asymmetries are of
interest here.

The first type of asymmetric behaviour relates to the numbers of significant
positive and significant negative trends. For each analysis timescale in Fig. 2, the
overlapping trends computed from the1Tf−o(k, t) difference series display a
preponderance of significant positive results. We use the γ1 statistic to quantify
this asymmetry:

γ1(k, l)=K+ve(k, l)−K−ve(k, l) (5)
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where:

K+ve(k, l)=
Nf−o(l)∑
i=1

M(i,k, l)

M(i,k, l)=1 if pc(i,k, l)′≤0.1

M(i,k, l)=0 if pc(i,k, l)′>0.1 (6)
and:

K−ve(k, l)=
Nf−o(l)∑
i=1

M(i,k, l)

M(i,k, l)=1 if pc(i,k, l)′≥0.9

M(i,k, l)=0 if pc(i,k, l)′<0.9 (7)

The summation variables K+ve(k, l) and K−ve(k, l) in equation (6) are the
total numbers of significant positive and significant negative trends in1Tf−o(k, t)
(respectively).M(i,k, l) in equations (7) and (8) is an integer counter, and pc(i,k, l)′
is the weighted p value for the currentmaximally overlapping trend, satellite data set,
and trend length. The significance of individual trends is assessed at the 10% level.

The second type of asymmetric behaviour in Fig. 2 relates to the temporal
distribution of significant positive trends in1Tf−o(k, t). If we split the total
number of maximally overlapping difference series trends into two equally sized
sets, there are noticeably fewer significant positive trends in the first set (SET 1)
than in the second set (SET 2). With the γ2 statistic, we seek to determine whether
this temporal asymmetry is unusual:

γ2(k, l)=KSET1(k, l)−KSET2(k, l) (8)
where:

KSET1(k, l)=
N (l)∑
i=1

M(i,k, l)

M(i,k, l)=1 if pc(i,k, l)′≤0.1

M(i,k, l)=0 if pc(i,k, l)′>0.1

N (l)≈Nf−o(l)/2 (9)

and:
KSET2(k, l)=

Nf−o(l)∑
i=N (l)+1

M(i,k, l)

M(i,k, l)=1 if pc(i,k, l)′≤0.1

M(i,k, l)=0 if pc(i,k, l)′>0.1 (10)

The γ3 statistic is analogous to γ2, but relies on differences between the average
values of pc(i,k, l)′ in SET 1 and SET 2:

γ3(k, l)=pc1 (k, l)
′
−pc2 (k, l)

′ (11)

where the average SET 1 and SET 2 p values, pc1 (k, l)
′ and pc2 (k, l)

′, are given by:

pc1 (k, l)
′
=

N (l)∑
i=1

pc(i,k, l)′/N (l) (12)

pc2 (k, l)
′
=

Nf−o(l)∑
i=N (l)+1

pc(i,k, l)′/N (l)

N (l)≈Nf−o(l)/2 (13)

Unlike γ1 and γ2, the γ3 statistic is not sensitive to the selected level for assessing
the significance of individual trends in1Tf−o(k, t).

Overall significance of asymmetry statistics. To determine the significance of the
actual values of these asymmetry statistics, we require null distributions of γ1, γ2
and γ3, where we know a priori that changes in the statistics are solely due to
random realizations of natural internal variability. We obtain null distributions of
γ1, γ2 and γ3 using surrogate observational temperature time series from the
CMIP5 control runs. The processing steps are as follows:
1. Randomly select one of the 36 CMIP5 pre-industrial control runs.
2. From the selected control run, randomly choose the initial month of a

456-month segment of temperature anomaly data. Ensure that the selected
initial month is valid (that is, that there are still at least 455 months between
the selected initial month and the end of the current control run). If this
condition is not satisfied, continue random selection of an initial month until
the first valid month is obtained. The time series of surrogate observations is
comprised of the first valid month and the next 455 months.

3. With the current surrogate observational time series, Tsurr(m, t), calculate the
weighted p values, pc(i,k, l)′, as in equation (3). Since we are interested in how
γ1,γ2 andγ3 behave in the presence of natural variability alone, the surrogate
observations are not used to form a difference series—that is, they are not
subtracted from T f (t) (the multi-model average), as was the case with the
actual satellite temperature data. Instead, individual maximally overlapping
L-year trends in the surrogate observations are compared directly with
distributions of control run L-year trends. In computing pc(i,k, l)′, the current
surrogate observational time series is excluded from the control runs used to
calculate unforced L-year temperature trends, and the summation in
equation (3) is over Nmodel−1 rather than over Nmodel.

4. From the values of pc(i,k, l)′ obtained from step 3, calculate the asymmetry
statistics γ1,γ2 andγ3, as in equations (5), (8) and (11).

5. Store these asymmetry statistics in γ1(l ,m)∗, γ2(l ,m)∗ and γ3(l ,m)∗, where the
indexm is over the total number of time series of randomly selected surrogate
observations, and ∗ denotes a statistic calculated with surrogate observational
temperature data.

6. Return to step 1; repeat steps 1 through 5 until 5,000 surrogate observational
time series have been selected, and 5,000-member distributions of
γ1(l ,m)∗, γ2(l ,m)∗ and γ3(l ,m)∗ have been generated.

7. For each observational data set, and for each of the five trend lengths
considered (10, 12, . . .18 years), compare the actual values of γ1(k, l), γ2(k, l)
and γ3(k, l) with their corresponding null distributions—that is, with
γ1(l ,m)∗, γ2(l ,m)∗ and γ3(l ,m)∗, respectively. Examples of such comparisons
are shown in Fig. 3b,d,f of the main text for the case of 10-year trends.
Determine the probability that the actual values of γ1(k, l), γ2(k, l) and γ3(k, l)
could be due to internal variability alone. These overall probabilities are
pγ1 (k, l), pγ2 (k, l) and pγ3 (k, l).

‘Perfect model’ results. Our ‘perfect model’ analysis considers whether an error in
model ECS, coupled with different phasing of internal climate variability in the real
world and in model HIST+8.5 simulations, could plausibly explain the actual
values of the three asymmetry statistics. To address this question, we form
difference series between tropospheric temperature changes in the HIST+8.5
MMA and in individual model realizations of HIST+8.5:

1Tf−f (j, t)=T f (t)−Tf (j, t) j=1, . . . ,Nmodel; t=1, . . . ,Nt (14)

where j is an combined index over HIST+8.5 realizations and models used to
perform the HIST+8.5 simulation. We calculate1Tf−f (j, t) for six different
non-overlapping 456-month periods: the same January 1979 to December 2016
period used for computing the ‘MMAminus observed’ difference series in equation
(2), three earlier periods (1862–1899, 1900–1937, and 1940–1977), and two later
periods (2020–2057 and 2058–2095). Because two of the three HadGEM2-CC
HIST+8.5 realizations commence in December 1959, the sample size is not
identical for the six analysis periods: Nmodel=47 (49) for the first three (last three)
periods, yielding a total number of 2881Tf−f (j, t) time series from which
asymmetry statistics can be calculated.

We process these 288 ‘MMAminus individual model’ difference time series in
the same way we treat the ‘MMAminus observed’ difference series—that is, we fit
maximally overlapping L-year trends to each1Tf−f (j, t) series, estimate weighted
p values for each overlapping trend (by comparing with control run distributions
of unforced L-year trends), and then use these p values to calculate asymmetry
statistics. The resulting ‘perfect model’ asymmetry statistics are γ1(j, l), γ2(j, l) and
γ3(j, l); the statistics are indexed overHIST+8.5 realizations andmodels (the j index)
and over the number of values of the trend timescale (the l index). Distributions of
these statistics are shown in Supplementary Fig. 9 for the 10-year analysis timescale.

Proxy for ECS. ECS information is typically obtained from a 4×CO2 simulation65.
Not all modelling groups participating in CMIP5 performed this simulation. Here,
we have ECS information for only 23 of the 37 CMIP5 models employed in our
‘perfect model’ analysis. To study underlying relationships between ECS and the
‘perfect model’ results, we require a proxy for ECS. Our selected proxy is1T8.5, the
total linear change in near-global averages of corrected TMT in the RCP8.5
simulation. For each realization and model,1T8.5 is calculated over the
1,080-month period from January 2006 to December 2095—the longest common
period in the RCP8.5 simulations analysed here (see Supplementary Table 3). For
the 23 models with 4×CO2 simulations, ECS is highly correlated with1T8.5

(Supplementary Fig. 6). This provides justification for our use of1T8.5 as an ECS
proxy in Supplementary Fig. 7. For the models analysed here,1T8.5 ranges from
3.28 ◦C in GISS-E2-R (p1) to 6.28 ◦C in GFDL-CM3.

Sample sizes in tests of asymmetry statistics. In assessing the statistical
significance of our asymmetry statistics, we have greater confidence in our ability
to rule out internal variability than in our ability to rule out the combined effects
of internal variability and a model sensitivity error. This is because the sample size
used to test the ‘internal variability only’ explanation (5,000 time series of surrogate
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observations) is much larger than the sample size in the ‘perfect model’ analysis
(288 time series of differences between the MMA and individual model HIST+8.5
realizations). The analysis using surrogate observations explores amuch larger phase
space in the timing and amplitude of the IPO and othermodes of internal variability.

Code availability.We have provided all of the information required for replication
of our results: an online Methods section with full details of our statistical analyses,
and access to all model and satellite temperature data used in the statistical
analyses. Replication of our results does not require access to the computer codes
associated with this paper. We therefore opted not to make these codes available.

Data availability. The model and satellite atmospheric temperature data that
support the findings of this study are available from the PCMDI website at
https://pcmdi.llnl.gov/research/DandA.
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