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Abstract ͳ�

Large uncertainties in streamflow projections derived from downscaled climate projections of ͳͺ�

precipitation and temperature can render such simulations of limited value for decision making ͳͻ�

in the context of water resources management. New approaches are being sought to provide ʹͲ�

decision makers with robust information in the face of such large uncertainties. We present an ʹͳ�

alternative approach that starts with the stakeholder’s definition of vulnerable ranges for relevant ʹʹ�

hydrologic indicators. Then, the modeled system is analyzed to assess under what conditions ʹ͵�

these thresholds are exceeded. The space of possible climates and land use combinations for a ʹͶ�

watershed is explored to isolate sub-spaces that lead to vulnerability, while considering model ʹͷ�

parameter uncertainty in the analysis. We implement this concept using classification and ʹ�

regression trees (CART) that separate the input space of climate and land use change into those ʹ�

combinations that lead to vulnerability and those that do not. We test our method in a ʹͺ�

Pennsylvania watershed for nine ecological and water resources related streamflow indicators for ʹͻ�

which an increase in temperature between 3°C to 6 °C and change in precipitation between -17% ͵Ͳ�

and 19% is projected. Our approach provides several new insights, for example we show that ͵ͳ�

even small decreases in precipitation (~5%) combined with temperature increases greater than ͵ʹ�

2.5ºC can push the mean annual runoff into a slightly vulnerable regime. Using this impact and ͵͵�

stakeholder driven strategy, we explore the decision-relevant space more fully and provide ͵Ͷ�

information to the decision maker even if climate change projections are ambiguous. ͵ͷ�

Index terms: (hydrology) - modeling, human impacts, climate impacts, (policy sciences) - ͵�

decision making under uncertainty, (informatics) - data mining  ͵�
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1 Introduction ͵ͺ�

Freshwater availability is essential for maintaining both the ecological and economic health of a ͵ͻ�

region. We need reliable projections of future streamflow under changing environmental ͶͲ�

conditions to guide long-term water resources management and planning [Milly et al., 2002, Ͷͳ�

2008; Wagener et al., 2010]. The information about future streamflow is required at the scale of Ͷʹ�

regional planning [Barron, 2009]. However, obtaining this information can be difficult due to Ͷ͵�

large uncertainties in regional estimates of climate change projections [Hall, 2007; Beven, 2011; ͶͶ�

Collins et al., 2012].  Ͷͷ�

Common methods to estimate the impact of climate change on water resources include Ͷ�

direct use of climate model output or the linking of general circulation models (GCMs) to Ͷ�

hydrologic models via downscaling [Xu et al., 2005]. The latter is the most widely used strategy Ͷͺ�

to obtain projections of hydrologic variables. Literature is abundant with studies that use Ͷͻ�

downscaled GCM outputs as forcing for a hydrologic model to derive projected hydrologic ͷͲ�

changes in a region [e.g. Maurer and Duffy, 2005; Kay et al., 2009; Manning et al., 2009; Teng ͷͳ�

et al., 2012; Bennett et al., 2012]. In this study, we will call this modeling chain from GCMs to ͷʹ�

hydrologic models the hydro-climatic framework (Fig. 1a). ͷ͵�

There are several challenges in using this hydro-climatic framework for estimating future ͷͶ�

streamflow. First, there are large uncertainties in the streamflow output from the hydro-climatic ͷͷ�

framework that stem from a range of sources [Paton et al., 2013]. To begin with, there is ͷ�

uncertainty due to the chosen emission scenario. The further we project into the future, the more ͷ�

the projections from different emission scenarios separate. Secondly, GCM projections have ͷͺ�

large uncertainties (depending upon the region) mainly due to parameterization of cloud physics, ͷͻ�

uncertainty in climate sensitivity etc. The overlap in the underlying physics in these models Ͳ�
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limits our ability to construct an ensemble of climate models that can reasonably estimate the ͳ�

probability distribution of climate projections, since they do not represent independent samples ʹ�

[Stephenson et al., 2012; Knutti et al., 2013]. There are also significant uncertainties in the ͵�

hydrologic model, including model structural uncertainty and a dependence of the model Ͷ�

parameters on the climate in the calibration period [Merz et al., 2010; Singh et al., 2011, 2013]. ͷ�

A priori parameters can be used instead, but generally exhibit large uncertainties if these are �

estimated [Kapangaziwiri et al., 2012]. Hence, the traditional forward propagation approach that �

integrates uncertainty from different sources may lead to biased or over-confident hydrologic ͺ�

projections that might be ineffective in aiding decision makers [Hall, 2007; Beven, 2011].  ͻ�

So, while we generally assume that significant amount of uncertainties are present, we do Ͳ�

not know the actual amount and we often lack the ability to attribute the total estimated ͳ�

uncertainty to its sources (e.g. choice of GCM, downscaling, GCM parameters etc.). The ʹ�

contribution of different sources of uncertainty to the total uncertainty in streamflow projections ͵�

depends on the study region, the hydrologic indicator considered, the hydrologic model used etc Ͷ�

[Chen et al., 2011; Dobler et al., 2012; Teng et al., 2012; Bosshard et al., 2013]. For example, ͷ�

Teng et al. [2012] find that streamflow projections are more uncertain for drier regions within �

their study area in southeastern Australia. They also find that uncertainties in projections of low �

flow characteristics are higher for regions that are likely to experience large declines in future ͺ�

rainfall. Chen et al. [2011] also show that the relative contribution of uncertainty from different ͻ�

sources varies with the hydrologic metric being evaluated. Dobler et al. [2012] show that even ͺͲ�

though GCM uncertainties dominate hydrologic projections for most of the year, the uncertainty ͺͳ�

from hydrologic model parameters is greater than uncertainty from GCMs during some winter ͺʹ�

months. These recent findings also challenge the conclusions from earlier studies that the ͺ͵�
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uncertainty arising from GCMs or downscaling methods often overshadows those originating ͺͶ�

from the choice of hydrologic model structure or hydrologic model parameters [Wilby and ͺͷ�

Harris, 2006; Kay et al., 2009; Prudhoome and Davies, 2009a&b]. While traditional forward ͺ�

propagation approaches (Fig. 1a) may be used to gain understanding of possible changes in ͺ�

streamflow, decision makers do not always find this information helpful given that they can ͺͺ�

often include projections that suggest both positive and negative changes in streamflow (mainly ͺͻ�

due to precipitation). Recent studies have proposed alternative bottom-up or vulnerability based ͻͲ�

approaches for dealing with problems such as water management decisions under large ͻͳ�

projection uncertainties [Lempert et al., 2008; Wilby and Dessai, 2010; Brown et al., 2011; ͻʹ�

Weaver et al., 2013]. In essence, these alternative paradigms invert the problem by following a ͻ͵�

‘bottom-up’ approach as shown in Figure 1(b). Here, stakeholders define vulnerability ranges for ͻͶ�

a particular decision variable, e.g. a specific hydrologic indicator, from the outset. Then, all ͻͷ�

combinations of climatic input and model parameters that cause the variable of interest to ͻ�

transition into vulnerable regimes are identified through a modeling framework. Finally, the ͻ�

available information on future climate is integrated to assess the plausibility of the hydrologic ͻͺ�

indicator to transition into a vulnerable regime in the future.  ͻͻ�

These bottom-up approaches are sometimes also termed decision scaling or context-first ͳͲͲ�

approaches. They can be used in a wide variety of problems and have proved very useful for ͳͲͳ�

decision-making when projections of the future are highly uncertain [Moody and Brown, 2013; ͳͲʹ�

Kunreuther et al., 2013]. Lempert et al. [2008] describe two possible methods to identify ͳͲ͵�

vulnerable regions in the input space – patient rule induction method (PRIM) and classification ͳͲͶ�

and regression trees (CART). Neither of these methods is found to be significantly superior to ͳͲͷ�

the other in Lempert et al. [2008]. However, PRIM is generally employed when the output space ͳͲ�
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is partitioned in two possibilities – vulnerable or non-vulnerable. Other example applications of ͳͲ�

these alternative approaches include risk-based decision making to characterize contaminant ͳͲͺ�

plumes by Boso et al. [2013], and the use of decision tree models for estimating the value of ͳͲͻ�

information provided by a groundwater quality monitoring network by Khader et al. [2013]. ͳͳͲ�

In this study, we present a method based on this bottom-up paradigm that provides ͳͳͳ�

decision makers with information about adverse thresholds in climate and land use change that ͳͳʹ�

may cause a hydrologic indicator to transition to vulnerable regimes. These thresholds can ͳͳ͵�

directly be used to inform policy decisions even if uncertainties in future climate projections are ͳͳͶ�

large. For example, if an indicator quickly transitions into vulnerable regimes (small changes in ͳͳͷ�

climate or land use causing vulnerability - low thresholds), it provides the decision maker with ͳͳ�

the foresight that a very robust policy or drastic actions will be needed to avoid potentially large ͳͳ�

damages. In this way, the information about thresholds in climate or land use obtained can be ͳͳͺ�

combined with the available information on projected climate change (with small or large range ͳͳͻ�

of uncertainties) to provide the decision maker with better insights into the nature of the ͳʹͲ�

hydrologic indicator, its dominant controls, possible tipping points, feasibility of crossing those ͳʹͳ�

tipping points, etc. ͳʹʹ�

The objective of our study is to implement and test a classification tree method centered ͳʹ͵�

on a vulnerability-based approach for change assessment. We test our approach in the Lower ͳʹͶ�

Juniata watershed in Pennsylvania located in the northeastern USA for nine different hydrologic ͳʹͷ�

(streamflow) indicators. We derive classification trees for these indicators using a large range of ͳʹ�

possible climates, land uses and hydrologic model parameters. The large range of climates is ͳʹ�

generated by applying the delta change method to precipitation and temperature time series to the ͳʹͺ�

historical period of 1948-1958. A vegetation parameter in the hydrologic model approximates ͳʹͻ�
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the land use and uncertainty in the ranges for other hydrologic model parameters is based on ͳ͵Ͳ�

their a priori values derived from the watershed physical characteristics.  ͳ͵ͳ�

Using these classification trees, we demonstrate how our proposed method provides ͳ͵ʹ�

additional information to a decision maker as compared to the standard approach by generating ͳ͵͵�

estimates of critical thresholds in climate as well as an understanding of relative importance of ͳ͵Ͷ�

climate and land use change within the hydrologic modeling framework. For example, the ͳ͵ͷ�

available downscaled projections of climate from nine general circulation models (GCMs) for ͳ͵�

the baseline (1990-2000) and end of century (2090-2100) time periods are used to navigate the ͳ͵�

classification tree to arrive at the future values of the indicators (eg. mean annual runoff) and ͳ͵ͺ�

assess the impact of changing climate on the hydrologic indicator. We then compare the ͳ͵ͻ�

projections from the classification tree based approach to those from the standard approach by ͳͶͲ�

driving a historically calibrated hydrologic model using future projections of downscaled ͳͶͳ�

climate.  ͳͶʹ�

2 Methodology, model and data ͳͶ͵�

2.1 A classification tree based strategy for identifying critical climate and land use change ͳͶͶ�

combinations  ͳͶͷ�

The main goal of our study is to establish the relationship between different possible climate and ͳͶ�

land-use changes in our study watershed and resulting streamflow indicator values (Fig. 2). To ͳͶ�

achieve this goal, we invert the problem through exploratory modeling. We start by defining a ͳͶͺ�

feasible space of climate and land use changes. Land use is represented as a parameter ͳͶͻ�

representing the fraction of deep-rooted vegetation in the watershed – assuming that this is main ͳͷͲ�

aspect of vegetation that matters for the hydrologic indicators studied here. Other processes and ͳͷͳ�
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land use characteristics can be easily included. Different feasible climates are generated using the ͳͷʹ�

delta change method in which only the mean of the climate variables (precipitation and ͳͷ͵�

temperature) is changed keeping the higher moments fixed [Nash and Gleick, 1991; Jones et al. ͳͷͶ�

2006]. Following this definition of the feasible input space, we establish different classes for the ͳͷͷ�

hydrologic indicator of interest. Here the stakeholder would normally be asked to provide their ͳͷ�

definition of vulnerable ranges of streamflow indicators. This could for example be an ecologist ͳͷ�

who defines critical values for a particular aquatic species, or a water resources manager who has ͳͷͺ�

to fulfill multiple competing demands throughout the year.  ͳͷͻ�

 In our study, we establish the following grouping to demonstrate the methodology: if the ͳͲ�

value of the selected indicator is within historical variability, it falls in Class 1, if it is only ͳͳ�

slightly above historically observed values, it is assigned Class 2, and extreme increases are ͳʹ�

grouped in Class 6. We develop similar classes for values that are below the observed historical ͳ͵�

variability. Each resultant value of the hydrologic indicator obtained from a particular ͳͶ�

combination of climate and land use can then be assigned a class based on these class definitions. ͳͷ�

Even though we start with a possible classification of hydrologic indicator space to demonstrate ͳ�

the method, stakeholders can adjust this approach by defining their own vulnerability classes and ͳ�

identify how climate or land use change will impact the indicators that most interest them. This ͳͺ�

will allow them to have an understanding of not just the specific projections of streamflow based ͳͻ�

on climate model outputs but the general behavior of their indicator. Using the mapping from ͳͲ�

input climate and land use space to output indicator space, they can decide how robust the policy ͳͳ�

for dealing with future changes should be. ͳʹ�

Using N climates and P parameter combinations, we derive NxP values of hydrologic ͳ͵�

indicators of interest by driving the hydrologic model with these combinations and assign them ͳͶ�
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to their specific class. Next, we use the classification and regression tree (CART) to relate the ͳͷ�

climate and land use changes to the different classes of the streamflow indicator. CART is a ͳ�

binary recursive partitioning algorithm that divides the input space of multiple variables into sub-ͳ�

spaces, with each sub space related to a particular class of output variable [Breiman et al., 1984]. ͳͺ�

At each stage, the tree partitions the space based on maximum gain in information. Thus, through ͳͻ�

CART analysis, we can assess the critical changes in land use and climate required to push the ͳͺͲ�

streamflow indicators into different regimes (represented by the indicator classes). Once we ͳͺͳ�

obtain the information regarding the critical combinations in climate and land use, we can ͳͺʹ�

include the available downscaled climate data into the analysis. Using the future projections of ͳͺ͵�

climate change derived from downscaled GCMs, we can assess the plausibility of the hydrologic ͳͺͶ�

indicator to transition into a vulnerable regime. Similarly, we could assess specific land use ͳͺͷ�

change scenarios for the study region. ͳͺ�

2.2 Hydrologic Model  ͳͺ�

Figure 3 shows the hydrologic model structure used in this study adapted from the top-down ͳͺͺ�

modeling framework by Bai et al., [2009] and Farmer et al. [2003]. The model has a spatially-ͳͺͻ�

lumped parsimonious model structure and is run at a daily time step. It comprises of a snow ͳͻͲ�

module followed by a soil moisture accounting module and a routing module. There is ͳͻͳ�

possibility for recharge from the saturated soil store to the deeper groundwater store. The soil ͳͻʹ�

moisture accounting module splits the soil into two layers – unsaturated and saturated stores. The ͳͻ͵�

soil depth is modeled using a multiple bucket scheme based on the ten-bucket Xinanjiang-model ͳͻͶ�

distribution [Zhao et al., 1980; Son and Sivapalan, 2007; Bai et al., 2009]. The multiple buckets ͳͻͷ�

are filled and spilled in a parallel configuration.  ͳͻ�
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Evapotranspiration is estimated by dividing the catchment surface into bare soil and ͳͻ�

deep-rooted vegetation covered areas. The soil profile is divided into unsaturated and saturated ͳͻͺ�

zones. ET from the saturated zone is proportional to potential evaporation and the soil moisture ͳͻͻ�

content. The saturated zone ET is modeled similarly for both bare soil and vegetation covered ʹͲͲ�

fractions. The main difference in ET arises within the unsaturated soil store. In the unsaturated ʹͲͳ�

zone, the fraction of the watershed covered by bare soils evaporates at a rate that is proportional ʹͲʹ�

to the soil water content and to the potential evaporation. While in the case of vegetation-covered ʹͲ͵�

soils, transpiration from the unsaturated stores is controlled by field capacity parameter. If the ʹͲͶ�

soil moisture content exceeds field capacity, transpiration occurs at potential rate. The basic ʹͲͷ�

formulation is adapted from Bai et al. [2009], with modifications for including phenology and ʹͲ�

leaf area index from Sawicz et al. [2013]. Equations are included in the Appendix A. ʹͲ�

The growing behavior of vegetation, efficiency of water extraction from the soil, and ʹͲͺ�

variable canopy interception are included in the model to represent phenology in three ways. ʹͲͻ�

Above 10°C, water extraction by vegetation is considered unimpeded and is set at its maximum ʹͳͲ�

capacity. Below -5°C, water extraction efficiency is considered to have stopped so there is no ʹͳͳ�

evapotranspiration. Between these two ranges, a linear relationship between extraction efficiency ʹͳʹ�

and temperature is assumed. The canopy interception is modeled as maximum canopy ʹͳ͵�

interception during summer months and a minimum during winter months. A sinusoidal function ʹͳͶ�

is used to describe the canopy interception for periods between summer and winter. Details of ʹͳͷ�

model equations are provided in Appendix A and Table 2 lists the feasible range of parameters ʹͳ�

based on literature review.   ʹͳ�



 11

2.3 Study area – The Lower Juniata Watershed  ʹͳͺ�

The Lower Juniata watershed is located in the northeastern United States (Fig. 4). The area of the ʹͳͻ�

watershed is around 8686 km2, which encompasses roughly 12% of the area of the Susquehanna ʹʹͲ�

River basin. Most of the watershed is covered by forests (~70%), followed by agriculture (~23%) ʹʹͳ�

and urban land use (~7%) [Falcone et al., 2010]. Baseflow index estimated from the hydrograph ʹʹʹ�

of the gauge located at the Juniata River at Newport, PA is around 0.70. The baseflow index is ʹʹ͵�

estimated using a single pass filter by Arnold et al. [1995].  Mean annual precipitation (P) for the ʹʹͶ�

period 1948-58 is 1007 mm/year and mean annual potential evapotranspiration (PE) estimated ʹʹͷ�

from the Hargreaves equation [Hargreaves and Samani, 1985] is around 1066 mm/year resulting ʹʹ�

in an aridity index of around 1. The mean annual flow (Q) for the period 1948-58 is 444 ʹʹ�

mm/year resulting in long term runoff ratio (Q/P) of 0.44.   ʹʹͺ�

2.4 Data  ʹʹͻ�

The historical streamflow, temperature and precipitation data is obtained from the MOPEX ʹ͵Ͳ�

dataset [Duan et al., 2006]. The downscaled climate data used in the study is derived using the ʹ͵ͳ�

probabilistic downscaling method by Ning et al. [2012a,b]. Table 3 lists the number of global ʹ͵ʹ�

climate models (GCMs) used for this analysis. We also use the data from Falcone database ʹ͵͵�

[Falcone et al., 2010] for obtaining watershed properties such as land use, soil types, etc. to ʹ͵Ͷ�

derive a-priori ranges of hydrologic model parameters. ʹ͵ͷ�

2.5 Classification and regression trees  ʹ͵�

Classification and regression tree (CART) is a recursive partitioning algorithms used to ʹ͵�

classify the space defined by the input variables (here hydrologic model parameters and climate) ʹ͵ͺ�

based on the output variable (here categorized hydrologic indicators) [Breiman et al., 1984]. In ʹ͵ͻ�
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this study, we apply CART analysis using the statistical CART package of R called ‘rpart’ ʹͶͲ�

[Therneau and Atkinson, 2010]. This method automatically provides a pruned tree after a tenfold ʹͶͳ�

cross validation and also provides estimates for the misclassification error rates and cross-ʹͶʹ�

validation error rates for the classification trees developed.  ʹͶ͵�

The resulting tree consists of a series of nodes, where each node is a logical expression ʹͶͶ�

based on the values of a hydrologic model parameter or a climate variable in the input space. If ʹͶͷ�

the expression is true, the left branch is followed; otherwise the right branch is followed. In this ʹͶ�

way, one can follow different combinations of expressions (representing multi-dimensional sub-ʹͶ�

spaces of the input variables) to arrive at a terminal leaf, which represents the output variable ʹͶͺ�

class with the highest probability. Since the classification is imperfect, the CART analysis also ʹͶͻ�

provides information on the probabilities of different output classes at each terminal leaf node. ʹͷͲ�

The histograms of class distributions at each terminal leaf node visualize these probabilities, ʹͷͳ�

thereby providing an assessment of the uncertainty associated with the classification. ʹͷʹ�

3 Results ʹͷ͵�

3.1 Obtaining a-priori ranges for hydrologic model parameters  ʹͷͶ�

We include parametric uncertainty in this analysis by obtaining a-priori parameter ranges largely ʹͷͷ�

based on physical watershed characteristics. This is achieved in two ways - relating the different ʹͷ�

components of the hydrologic model with observed physical characteristics of the watershed ʹͷ�

from the Falcone database and recession curve analysis of the historical streamflow data. Using ʹͷͺ�

this approach, a-priori ranges are obtained for seven out of twelve parameters. For the remaining ʹͷͻ�

parameters, feasible ranges are obtained from literature [Farmer et al., 2003; Van Werkhoven et ʹͲ�
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al., 2008; Kollat et al., 2013]. The a-priori ranges are estimated for two recession parameters, ʹͳ�

two soil parameters and three vegetation parameters.  ʹʹ�

 We derive a-priori ranges for two parameters related to the soil module - soil depth and ʹ͵�

field capacity. Soil depth is obtained based on the available depth to bedrock estimates, and ʹͶ�

porosity estimates of sand, silt and clay (all three are present in the watershed in significant ʹͷ�

amounts - 50% silt, 30% sand and 20% clay). Field capacity parameter range is estimated as the ʹ�

range of the field capacity parameter across sand, silt and clay using the information on ʹ�

watershed average available water capacity, porosity and permanent wilting point ranges for ʹͺ�

sand, silt and clay. Vegetation parameter is estimated from land use information about the ʹͻ�

watershed [Falcone et al., 2010].  The percentage forest cover in the watershed is around 70%, ʹͲ�

so the range of fraction of deep-rooted vegetation in the watershed is fixed between 0.6-0.8. Leaf ʹͳ�

area index values are fixed between 0-6, since most the forests are deciduous in nature. ʹʹ�

Appendix tables B1-B3 lists these calculations in details. ʹ͵�

Two recession parameters are present in the model - recession coefficient 1 (Ass) for ʹͶ�

subsurface flow from the saturated store and recession coefficient 2 (Abf) for baseflow from the ʹͷ�

ground water reservoir. These are obtained from analyzing the recession behavior of the ʹ�

available streamflow time series. Since the model does not route the surface flow, recession ʹ�

analysis is carried out only on baseflow component of the total streamflow, which is derived ʹͺ�

from the base flow filter [Arnold et al., 1995]. Two slopes are estimated for each year across a ʹͻ�

10-year time period. Recession coefficient 1, which represents the recession from saturated store, ʹͺͲ�

is estimated as the average slope across the fast recession limbs (6-14 days). Recession ʹͺͳ�

coefficient 2, which represents the recession from the ground water reservoir, is estimated by ʹͺʹ�

constructing a master recession curve for the recession after removing the faster recession limbs ʹͺ͵�
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(50-83 days). Figures B1-B2 shows the estimation procedure of routing parameters as derived ʹͺͶ�

from the streamflow hydrographs and Table 2 lists the ranges. ʹͺͷ�

3.2 Climate scenarios ʹͺ�

The delta change method described in Section 2.1 is used to generate climate change scenarios. ʹͺ�

The historical period of 1948-1958 is used as the base period and changes in temperature and ʹͺͺ�

precipitation are applied on the climate time series for this period. The ranges for precipitation ʹͺͻ�

change explored are -50% to +50% in steps of 10%. The ranges for temperature change are 0°C ʹͻͲ�

to 8 °C in steps of 1°C. Therefore, the total number of climate combinations explored is 99. The ʹͻͳ�

adjustments to the climate data were made at daily time steps with the precipitation values ʹͻʹ�

multiplied by a suitable fraction between 0.5-1.5 and the temperature values increased by 0-8 °C. ʹͻ͵�

To provide an estimate of how wide these ranges are - the IPCC 4th assessment report ʹͻͶ�

[Christensen et al., 2007] suggests changes in precipitation between -3% to 15 % and ʹͻͷ�

temperature increase between 2.3-5.6°C from 1980-99 to 2080-99 for Eastern US under the A1B ʹͻ�

emission scenario. It is important to note here that we use two different climate data in the study ʹͻ�

- the climates generated from the delta change method are used to explore the feasible climate ʹͻͺ�

space, whereas, the downscaled climate data by Ning et al., [2012a,b] is used once the (synthetic) ʹͻͻ�

climate and land use space has been related to the hydrologic indicator. The synthetic climate ͵ͲͲ�

data is used to explore the climate space and build the classification trees. The downscaled ͵Ͳͳ�

climate data is used to assess the plausibility of the watershed to transition into a vulnerable ͵Ͳʹ�

regime in section 3.8 once the tree is derived.�͵Ͳ͵�

3.3 Defining classes for streamflow indicators  ͵ͲͶ�

In this study, we assume that we want to analyze the major controls on indicators representing ͵Ͳͷ�

aspects of streamflow relevant for ecology as well as water availability for human abstractions ͵Ͳ�
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such as power generation. Magnitude related indicators such as mean annual runoff would ͵Ͳ�

determine average water availability. Seasonal variability of water availability will be ͵Ͳͺ�

represented by indicators related to flow in months of high/low flows. Olden and Poff [2003] ͵Ͳͻ�

describe several indicators that are ecologically relevant as well as represent water availability. ͵ͳͲ�

Based on the insights provided by them, we include 4 categories of indicators in our analysis ͵ͳͳ�

(Table 1).  ͵ͳʹ�

• Magnitude related indicators include mean annual runoff, minimum April flow, and ͵ͳ͵�

maximum August flow. As shown in Figure B3, August is a low flow month for this ͵ͳͶ�

watershed, and April is a high-flow month. Therefore, flows for both months are included ͵ͳͷ�

in the analysis.  ͵ͳ�

• Frequency related indicators include low flow pulse count and flood frequency. These are ͵ͳ�

important to assess the recurrence of low/high flow conditions in the watershed, which ͵ͳͺ�

will be critical for in stream flora and fauna. ͵ͳͻ�

• Duration related indicators include low flow pulse duration and high flow pulse duration. ͵ʹͲ�

Low flow pulse duration is particularly important since it assesses the number of days ͵ʹͳ�

low flows will sustain in the watershed and is very important to assess water availability ͵ʹʹ�

for power production during summer months.  ͵ʹ͵�

• Indicators describing the timing and rate of change of streamflow include seasonal ͵ʹͶ�

predictability of non-flooding and reversals.  ͵ʹͷ�

 We define classes for each indicator as shown in the example illustrated in Figure 5. ͵ʹ�

These class definitions are fixed across all indicators. The range of indicator values for each class ͵ʹ�

is estimated using the standard deviation calculated from the historical data. A 10-year running ͵ʹͺ�

window from 1948-2002 is used to estimate 45 values for each indicator. We find that a range of ͵ʹͻ�
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4ı, where ı is the standard deviation of the indicator values in the running window between ͵͵Ͳ�

1948-2002, is sufficient to cover all indicator values in most cases. Therefore, the width of each ͵͵ͳ�

class is fixed at 4ı. The different indicator classes are defined using the mean (µ) and standard ͵͵ʹ�

deviation (σ) from the historical period as follows: ͵͵͵�

• Class 1 – Historical range:              ȝ-2ı <Value<ȝ+2 ı  ͵͵Ͷ�

• Class 2 – Slightly higher than historical range         ȝ+4ı<Value<ȝ+8ı ͵͵ͷ�

• Class 3 – Much higher than historical range            ȝ+8ı<Value<ȝ+12ı ͵͵�

• Class 4 - Slightly lower than historical range          ȝ-4ı<Value<ȝ-8ı ͵͵�

• Class 5 – Much lower than historical range             ȝ-8ı<Value<ȝ-12ı ͵͵ͺ�

• Class 6 – Extremely high ranges                               ȝ+12ı<Value ͵͵ͻ�

• Class 7 – Extremely low ranges                                Value<ȝ-12ı ͵ͶͲ�

If the lower limit of a class is falls below zero, it is set equal to zero and the remaining ͵Ͷͳ�

classes below this limit are eliminated.  ͵Ͷʹ�

3.4 Classification results for changing climate and fixed land use   ͵Ͷ͵�

10000 random parameter sets are generated from the a-priori parameter ranges in Table 2 using ͵ͶͶ�

Latin Hypercube sampling. Based on the method described in Figure 2, we drive the hydrologic ͵Ͷͷ�

model with 99 climates and 10000 parameter combinations to estimate the value of streamflow ͵Ͷ�

indicator for each combination. In this way, we end up with 990,000 values for each indicator ͵Ͷ�

across a broad range of climates, land use (represented by the fraction of deep-rooted vegetation ͵Ͷͺ�

parameter) and watershed properties (represented by the range of a-priori parameter sets). After ͵Ͷͻ�

this, we assign each indicator value a class based on whether it falls within the range of historical ͵ͷͲ�

variability or outside it, as described in section 3.3. Then, classification and regression trees ͵ͷͳ�

(CART) are used to relate the different classes of indicators (output variable) with input climate ͵ͷʹ�
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and parameter space (input variables). The data on misclassification and cross-validation rates ͵ͷ͵�

for the classification trees derived in this study are included in Appendix C. Here we will focus ͵ͷͶ�

our analysis of three selected indicators to show the application of the method, the classification ͵ͷͷ�

trees for the remaining indicators are included in Appendix C - ͵ͷ�

• Mean annual runoff – this indicator represents general water availability  ͵ͷ�

• Maximum August flow – August is a month of low flows and this indicator suggests the ͵ͷͺ�

condition of low flows ͵ͷͻ�

• Flood frequency – indicates the condition of high flows  ͵Ͳ�

 We start with the controls on flood frequency for the case of changing climates but fixed ͵ͳ�

land use. In this case, the fraction of deep-rooted vegetation is fixed at the historical range. ͵ʹ�

Figure 6 (a) shows the different class assignments based on historical variability of flood ͵͵�

frequency derived from streamflow data. Class definitions have been provided in Section 3.3. ͵Ͷ�

Here we assume that an increase (shown by yellow and shades of red) in the value of the flood ͵ͷ�

frequency will lead to vulnerability since that corresponds to the watershed experiencing high ͵�

floods more frequently, a decrease is assumed to have uncertain impacts (shown by shades of ͵�

green). ͵ͺ�

 Figure 6 (b) shows the classification tree for flood frequency for fixed land use but ͵ͻ�

changing climates. The tree consists of many nodes, each of which is a logical expression. If the ͵Ͳ�

expression is true, the left branch is followed, otherwise the right one. In this manner, by ͵ͳ�

navigating different sub-spaces of climate and parameters, we reach a ‘terminal’ node or a leaf. ͵ʹ�

At the leaf, the indicator class that results from the combination of different logical expressions ͵͵�

is shown. From the tree in Figure 6 (b), we find that the primary control on this indicator is ͵Ͷ�

precipitation (shown as Pratio – the ratio of mean annual precipitation in the future to historical ͵ͷ�
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mean annual precipitation) followed by the recession coefficient describing the recession from ͵�

the subsurface soil moisture store (Ass). The maximum height of soil moisture storage (Sb) is the ͵�

third control. This suggests that frequency of high floods depends first upon the climate of the ͵ͺ�

watershed followed by its ability to release water from the subsurface and amount of water that ͵ͻ�

can be stored in the subsurface. ͵ͺͲ�

 We also show the class probabilities associated with the classes 1 to 7. This gives an ͵ͺͳ�

indication of how ‘pure’ a terminal node is. If all the indicator values based on navigating a set ͵ͺʹ�

of logical expressions resulted in a single class, the probability distribution will be skewed ͵ͺ͵�

towards that class. On the other extreme, if the classification algorithm is unable to relate the ͵ͺͶ�

indicators class with specific regions in the input variables space, the node will be highly impure, ͵ͺͷ�

or the probability distribution across classes 1 to 7 will be nearly flat. Most of the times the ͵ͺ�

probability distribution are in the middle of these two extremes suggesting there is always some ͵ͺ�

uncertainty in threshold values of climate and parameters selected by the classification ͵ͺͺ�

algorithm.  ͵ͺͻ�

 Using Figure 6 (b), one can also identify the different pathways that lead to vulnerability ͵ͻͲ�

of the indicator as shown by solid black lines. Even for small rises in mean annual precipitation ͵ͻͳ�

(increase of 5% from historical value) the indicator can transition to different dominant controls. ͵ͻʹ�

In this case, if the mean annual precipitation is greater than 0.95 times the historical value, the ͵ͻ͵�

indicator’s classes are controlled by the recession coefficient, Ass and maximum height of soil ͵ͻͶ�

moisture storage, Sb. If not, further changes in mean annual precipitation control the indicator ͵ͻͷ�

values. Following the left branch of the classification tree, we find that if mean annual ͵ͻ�

precipitation changes remain within 0.95 to 1.15 times the historical value, the most likely values ͵ͻ�

of flood frequency fall into Class 1, i.e., the indicator remains within historical variability. On the ͵ͻͺ�
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other hand as mean annual precipitation rises beyond 1.15 times its historical value, model ͵ͻͻ�

parameters emerge as significant controls on the classes for the indicator. It is worth pointing out ͶͲͲ�

that even though temperature is varied across a wide range in this analysis (0 to 8 °C), it does not ͶͲͳ�

show up at all as a dominant control for flood frequency. ͶͲʹ�

 We can conclude from this tree that if the watershed witnesses an increase in ͶͲ͵�

precipitation, both the amount of increase and other watershed properties will govern the future ͶͲͶ�

values for flood frequency. On the other hand, if the watershed transitions into decreasing ͶͲͷ�

precipitation regimes, precipitation itself will be the dominating control on this indicator. Using ͶͲ�

available data on future climate projections and historical streamflow, we can further assess the ͶͲ�

plausibility of the different paths as discussed in sections 3.7 and 3.8. ͶͲͺ�

 Instead of using class widths as 4ı as described in section 3.3, if we use 6ı as the width ͶͲͻ�

of each class, the resultant tree is shown in Figure 6 (c). For the flood frequency indicator, if the ͶͳͲ�

thresholds are shifted to larger limits, it does not impact the dominant patterns in the Ͷͳͳ�

classification tree. Precipitation is still the major control and its thresholds remain consistent Ͷͳʹ�

between Figure 6(b) and Figure 6(c). Similarly recession coefficient Ass also remains an Ͷͳ͵�

important control and its thresholds are the same between the two classification trees. The ͶͳͶ�

changes are found at lower levels of the tree – absence of Sb (maximum height of soil moisture Ͷͳͷ�

storage), addition of temperature as a control and a slight modification of threshold of Pratio Ͷͳ�

from 0.85 in Figure 6(b) to 0.75 in Figure 6(c). Sine the class widths are defined to be wider in Ͷͳ�

Figure 6(c), larger changes in precipitation are now required to shift the regimes of the Ͷͳͺ�

hydrologic indicator. As before, even small changes in precipitation (5%) can lead to a shift in Ͷͳͻ�

dominant controls. ͶʹͲ�

3.5 Combined impact of climate and land use change on streamflow indicators Ͷʹͳ�
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 We estimate the combined impact of climate and land use change by allowing the Ͷʹʹ�

fraction of deep-rooted vegetation to vary from 0 to 1, representing no forest cover to full forest Ͷʹ͵�

cover in the watershed. We compare the case of fixed and varying land use for 2 indicators - ͶʹͶ�

maximum august flows and mean annual flows as shown in Figure 7. The left panel in the Fig. 7 Ͷʹͷ�

shows the classification tree for changing climate and fixed land use, the right panel shows the Ͷʹ�

classification trees for varying both climate and land use in the watershed. The impact of Ͷʹ�

changing land use varies across the two indicators – mean annual runoff in Fig. 7a and maximum Ͷʹͺ�

august flow in Fig. 7b. Several interesting patterns are discovered - Ͷʹͻ�

I. Type I impact – A decrease in fraction of deep-rooted vegetation cover increases the odds Ͷ͵Ͳ�

for the mean annual runoff to transition to higher values (Figure 7a). Also, once the fraction Ͷ͵ͳ�

of deep-rooted vegetation is allowed to vary from 0 to 1, land use becomes the 2nd most Ͷ͵ʹ�

dominant control on mean annual runoff. However, if the fraction of deep-rooted Ͷ͵͵�

vegetation is fixed in the historical range, temperature is the 2nd most dominant control. In Ͷ͵Ͷ�

general, we find that a small deep-rooted vegetation cover corresponds to high values of Ͷ͵ͷ�

mean annual flow. For example, Figure 7 (a – right panel) shows that for a 25% increase in Ͷ͵�

mean annual precipitation, the mean annual runoff always belongs to class C3 when the Ͷ͵�

percentage deep-rooted vegetation less than 36%. But when this percentage is allowed to Ͷ͵ͺ�

be greater than 36%, the indicator can belong either to Class 1 or in Class 2 based on the Ͷ͵ͻ�

values of temperature and climate change.  ͶͶͲ�

 Our results agree with Frans et al. [2013] who show a 5% increase in runoff when ͶͶͳ�

forests (deep-rooted vegetation) are replaced by croplands (shallow rooted) in the upper ͶͶʹ�

Mississippi river basin. Similarly, we find that a decrease in percentage of deep-rooted ͶͶ͵�

vegetation leads to a higher chances of the mean annual runoff belonging to class 3. ͶͶͶ�
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Another way of interpreting this result is that for a given climatic regime in a watershed, ͶͶͷ�

the input precipitation (P) is partitioned into green (ET) and blue water (Q) on the basis of ͶͶ�

extent of deep-rooted vegetation cover. So an increase in one will logically lead to a ͶͶ�

decrease in other.  ͶͶͺ�

II. Type II impact – A high fraction of deep-rooted vegetation cover is the only way some ͶͶͻ�

indicators can maintain their historically observed ranges. Maximum August flows would ͶͷͲ�

be much higher (belonging to classes 2, or class 5) than its historically observed range Ͷͷͳ�

(Class 1) if the percentage of deep-rooted vegetation in the watershed decreased beyond Ͷͷʹ�

32% (Figure 7b – right panel).  Ͷͷ͵�

III. Type III impact – Deep-rooted vegetation cover interacts with climate to generate different ͶͷͶ�

possible states for the watershed. For example, keeping the percentage of deep-rooted Ͷͷͷ�

vegetation in the watershed above 43% may prevent extreme increases in maximum Ͷͷ�

August flows. If the vegetation falls below 44% the maximum August flows will always Ͷͷ�

belong to class 5 (Figure 7b – right panel). The classification trees for combined climate Ͷͷͺ�

and land use change show how these two type of changes interact with each other to Ͷͷͻ�

generate different regimes for a hydrologic indicator.  ͶͲ�

In general, we find that until deep-rooted vegetation in the watershed falls below 50%, it Ͷͳ�

will not become a major factor on controlling the different hydrologic indicators since the split Ͷʹ�

values in logical expressions for fraction of deep-rooted vegetation picked by CART is less than Ͷ͵�

50% in almost all cases. On the other hand, even small changes in precipitation (~5%) ͶͶ�

significantly impact the dominant controls on the indicator. For the classification trees showing Ͷͷ�

the impact of deep-rooted vegetation for other hydrologic indicators, see Appendix C, Figures Ͷ�

C1-C6. Ͷ�
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3.6 Dominant controls for all hydrologic indicators Ͷͺ�

Figure 8 summarizes the different controls on the nine hydrologic indicators analyzed in this Ͷͻ�

study. We assess the importance of different controls for each indicator by using its classification ͶͲ�

tree. The input variable (climate or hydrologic model parameter) that forms the first split in the Ͷͳ�

tree is assigned maximum importance because among all input variables it is the one that can Ͷʹ�

classify the output space most effectively (maximum gain in information). In this manner, based Ͷ͵�

on the location of different input variables in the tree, we assign them a relative importance. This ͶͶ�

assignment is depicted by different shades of gray and is shown in the legend in Figure 8. We Ͷͷ�

show these controls for three cases – when parameters vary across their entire feasible range, Ͷ�

parameters are fixed at their a-priori ranges, all parameters except the fraction of deep-rooted Ͷ�

vegetation cover are fixed at their a-priori ranges (the case of varying land use). Ͷͺ�

We observe that the controls vary across indicators. Across the entire feasible ranges of Ͷͻ�

parameters, for magnitude related indicators, climate is the primary control, soil parameters are ͶͺͲ�

the secondary control and vegetation together with recession (or routing) parameters are tertiary Ͷͺͳ�

controls. The recession parameters are not important at all for two out of three magnitude related Ͷͺʹ�

indicators. For flood frequency, climate and soil parameters are dominant, whereas, recession Ͷͺ͵�

parameters are most important for low flow pulse count. For low flow pulse duration, ͶͺͶ�

precipitation is the dominant control followed by soil, vegetation and recession parameters. On Ͷͺͷ�

the other hand, high flow pulse duration is mainly governed by the recession parameters; climate Ͷͺ�

has a secondary effect and vegetation with soil parameters have a tertiary effect. For rate of Ͷͺ�

change indicator (reversals), soil parameters are the important controls followed by vegetation Ͷͺͺ�

and climate. No statistically significant trees are obtained for seasonal predictability of non Ͷͺͻ�

flooding in the case of feasible parameter ranges.   ͶͻͲ�
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When we reduce the feasible space to a-priori ranges of hydrologic model parameters Ͷͻͳ�

based on watershed physical properties, temperature shows up as an important secondary control Ͷͻʹ�

for two out of three magnitude related indicators. For magnitude related indicators, climate is the Ͷͻ͵�

dominant control with both precipitation and temperature being present in the classification tree. ͶͻͶ�

For monthly flows (minimum April and maximum August), soil parameters also have tertiary Ͷͻͷ�

importance. For low flow pulse count, climate and soil parameters (deep recharge coefficient and Ͷͻ�

soil shape parameter) are important. For flood frequency, climate is the primary control (also Ͷͻ�

seen in detail in Figure 6) followed by recession and soil parameters. For duration related Ͷͻͺ�

indicators too, climate followed by recession and soil parameters are the main controls. The Ͷͻͻ�

controls for rate of change (reversal) are similar as the case of feasible space with climate ͷͲͲ�

becoming the most important in restricted parameter space. The predictability of non-flooding is ͷͲͳ�

governed mainly by soil parameters followed by climate. However, this tree has a very skewed ͷͲʹ�

distribution with most of the indicator values belonging to the historical class (root node in ͷͲ͵�

Figure C5) and therefore the classification is not reliable. Once we allow the fraction of deep-ͷͲͶ�

rooted vegetation in the watershed to vary from 0 to 1 (the case of changing percentage ͷͲͷ�

vegetation), land use turns out to be the secondary control across all indicators. It is particularly ͷͲ�

important for low flow pulse count, low flow pulse duration, timing and rate related indicators. ͷͲ�

3.7 Impact of parametric uncertainty when navigating the classification trees ͷͲͺ�

In order to ascertain which path in a classification tree the watershed will follow, we need ͷͲͻ�

estimates of model parameters. Figure 9a shows classification tree for flood frequency (section ͷͳͲ�

3.4 and Figure 6) based on a range of climates, fraction of deep-rooted vegetation fixed at ͷͳͳ�

historical ranges, and a-priori ranges of parameters. A further reduced range of values for ͷͳʹ�

important parameters selected on the basis of calibration are shown in Fig. 9b. Out of 10000 ͷͳ͵�
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parameter sets generated using uniform random sampling, 19 parameter sets satisfying Nash-ͷͳͶ�

Sutcliffe Efficiency (N.S.E) >0.75 on Box-Cox transformed flows (using a Box-Cox parameter ͷͳͷ�

value of 0.3) and absolute bias error <10% are chosen to represent the range of parametric ͷͳ�

uncertainty [Nash and Sutcliffe, 1970; Brazil, 1988; Kottegoda and Rosso, 1997]. The Nash-ͷͳ�

Sutcliffe Efficiency was estimated for daily time steps and the absolute bias error was estimated ͷͳͺ�

as the difference between total runoff simulated and observed across the 10-year period. ͷͳͻ�

Even across a relatively small set of high performing parameter sets, the ranges of parameters ͷʹͲ�

are high. High parametric uncertainty blurs the differentiation between the plausibility of ͷʹͳ�

different paths. We find that high uncertainty in recession coefficient, Ass, leads to two paths ͷʹʹ�

being feasible while analyzing the region of space with increases in precipitation beyond 15% of ͷʹ͵�

the historical value. This indicates the need for reducing these uncertainties in order to decrease ͷʹͶ�

the range of possible futures. The tree also demonstrates how uncertainties in climate and ͷʹͷ�

parameters interact with each other in a complex manner. Even if we know for certain the future ͷʹ�

climate, existing parameter uncertainties makes the projection of future regime of indicator ͷʹ�

uncertain.  ͷʹͺ�

We generally do not observe such an impact of hydrologic model parameters on estimates of ͷʹͻ�

hydrologic indicators in other studies since they focus mainly on magnitude related indicators. In ͷ͵Ͳ�

this study too, the magnitude related indicators (such as mean annual runoff), are mainly ͷ͵ͳ�

dependent on the climate of the watershed (Figure 8, the case of a-priori parameter ranges). Even ͷ͵ʹ�

when studies explore different indicators they only vary the analysis between high and low flow ͷ͵͵�

magnitude indicators. But if we move beyond magnitude related indicators towards frequency ͷ͵Ͷ�

and duration related indicators, the hydrologic model parameter uncertainty becomes much more ͷ͵ͷ�

important as seen in the example provided in Figure 9.  ͷ͵�
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3.8 Comparing top-down with bottom-up approach  ͷ͵�

Finally, we compare the traditional top-down approach for deriving streamflow projections to the ͷ͵ͺ�

bottom-up approach used in this study. We derive the future values for different indicators using ͷ͵ͻ�

projections of future climate based on a statistically downscaled ensemble. We obtained future ͷͶͲ�

climate information from 9 GCMs (Table 3) and 1500 realizations per GCM based on the ͷͶͳ�

method in Ning et al., [2012 a,b]. We use 19 parameter sets that satisfy a bias error < 10% and ͷͶʹ�

N.S.E >0.75 on Box-Cox transformed flows. This represents the classical calibration based ͷͶ͵�

approach. Figure 10a shows the ranges for change in precipitation and temperature based on ͷͶͶ�

downscaled climate data, 10b shows the classification tree for mean annual runoff derived from ͷͶͷ�

climates generated by delta-change method, and 10c shows the future projections of streamflow ͷͶ�

obtained by the tradition top-down approach. By using the range of future precipitation and ͷͶ�

temperature change from downscaled climate data in Fig. 10a, we can assess projected future ͷͶͺ�

streamflow from the classification tree in Fig. 10b by following the branches of the tree that ͷͶͻ�

represent temperature change between 3 °C and 6 °C and precipitation change between 0.83 to ͷͷͲ�

1.19 times the historical mean annual precipitation. On comparing the projections of streamflow ͷͷͳ�

in Fig. 10c with those from the CART analysis in Fig. 10b, we find that both analyses project ͷͷʹ�

future mean annual runoff to be either within the historical range or to decrease (Class 4). ͷͷ͵�

However, CART analysis provides additional information about the thresholds in climate, which ͷͷͶ�

the traditional top-down approach does not. For example, following the left most branch of the ͷͷͷ�

tree in Fig. 10b, we find that a temperature change greater than 2.5°C will keep the future ͷͷ�

streamflow within the historical range (Class C1) even if precipitation increases between 25% ͷͷ�

and 35%.  ͷͷͺ�
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We can also visualize all the combinations of input climate and parameters that lead to a ͷͷͻ�

particular class of hydrologic indicator using high dimensional data visualization. An example ͷͲ�

for mean annual runoff is shown in Figure 11. The results are plotted as parallel co-ordinate plots ͷͳ�

with the normalized values for all parameters and climate change ranges. The temperature ͷʹ�

increase is normalized between 0°C to 8°C, and the precipitation change is normalized between ͷ͵�

0.5 and 1.5 times the historical precipitation. Other parameters are normalized according to a-ͷͶ�

priori ranges of model parameters.  ͷͷ�

Figure 11 shows that only precipitation and temperature are the main controls on mean ͷ�

annual runoff, with precipitation being primary and temperature being a secondary control. We ͷ�

find that only low values of temperature increases can lead to mean annual runoff transitioning to ͷͺ�

Class 3 as seen from the skewed distribution in temperature change for the subplot showing ͷͻ�

Class 3 (green). Note that the classification tree does not provide much information about the ͷͲ�

climate combinations that lead to Class 3 - there is no node in Figure 10(b) that results in C3. ͷͳ�

Visualization such as those in Figure 11 can be further used to explore such classes that do not ͷʹ�

emerge as prominently in the classification tree. Figure 11 suggests that if the temperature ͷ͵�

increases beyond 2°C to 3°C, no matter how high the precipitation increase will be, streamflow ͷͶ�

is not likely to be as high as the ranges in Class 3. On the other hand, large decreases in ͷͷ�

precipitation always result in extremely low streamflow values (C5) despite constant or ͷ�

increasing temperature. Therefore, we find that the sensitivity of streamflow to temperature ͷ�

changes is a function of precipitation change. Streamflow is very sensitive to temperature change ͷͺ�

when precipitation increases by amounts [25%-35%] and relatively insensitive to temperature ͷͻ�

change if precipitation decreases beyond -35% of the historical value. ͷͺͲ�
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4 Discussion  ͷͺͳ�

We find that critical thresholds for climate and land use change vary across indicators. For ͷͺʹ�

example, small decreases in precipitation (~ -5%) combined with temperature increases greater ͷͺ͵�

than 2.5°C can cause mean annual runoff to transition into a slightly vulnerable regime. The ͷͺͶ�

mean annual runoff remains within historical variability when either the precipitation change ͷͺͷ�

remains between -5% to 15% and temperature increases are less than 2.5°C, or temperature ͷͺ�

increases beyond 2.5°C and precipitation increases between 25% to 35%. Even for other ͷͺ�

frequency/duration indicators like low flow pulse duration, small decreases in mean annual ͷͺͺ�

precipitation (>5%) can shift its values outside historical variability (Figure C3). ͷͺͻ�

We also find interesting interactions between climate and land use change in the ͷͻͲ�

watershed. Deep-rooted vegetation cover plays a dual role in the hydrology of a watershed – it ͷͻͳ�

makes low flow conditions more severe due to larger evapotranspiration, but also mediates the ͷͻʹ�

impacts of high flows. For example, the classification tree showing the controls on low flow ͷͻ͵�

pulse duration with varying fraction of deep-rooted vegetation (Figure C3, lower panel) ͷͻͶ�

illustrates that for all cases of mean annual precipitation decreases between -35% to -15% of the ͷͻͷ�

historical value, and percentages of deep-rooted vegetation less than 36%, the indicator has high ͷͻ�

probability of belonging to the slightly vulnerable class – Class C2. But for the same range of ͷͻ�

mean annual precipitation, if the percentage of deep-rooted vegetation is greater than 36%, the ͷͻͺ�

indicator has higher chances of belonging to much higher vulnerability classes – C3 and C6. So ͷͻͻ�

an increase in percentage of deep-rooted vegetation leads to increased chances of persistence of ͲͲ�

low flow conditions in the stream. This is similar to a recent observation from four headwater Ͳͳ�

catchments in central and Western Europe by Teuling et al., [2013], where they find that Ͳʹ�

evapotranspiration intensified the summer drought in these catchments.  Ͳ͵�
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In another example, the case of mean annual runoff in Fig. 7a (case of combined climate ͲͶ�

and land use change), we find that for increases in mean annual precipitation greater than 25%, Ͳͷ�

the likelihood of the mean annual runoff belonging to extremely high values (Class C3) is Ͳ�

greatest if the percentage of deep-rooted vegetation in the watershed is less than 36%. If the Ͳ�

percentage of vegetation is greater than 36%, depending on particular climate and temperature Ͳͺ�

changes, the indicator values may fall in the historically observed ranges or be slightly higher Ͳͻ�

than historically observed values (Class C1 or C2). ͳͲ�

5 Conclusions  ͳͳ�

In this study, we develop a vulnerability-based approach to quantify the impact of climate and ͳʹ�

land use change on several streamflow indicators while considering hydrologic model parameter ͳ͵�

uncertainty. We explore a large space of climates, land uses and hydrologic model parameters, in ͳͶ�

order to understand their relative control on selected streamflow indicators, and find that ͳͷ�

different controls emerge across indicators. We also find that the sensitivity of streamflow to ͳ�

temperature and precipitation change depends upon the magnitude of the precipitation change ͳ�

itself. For example, the values of mean annual runoff are relatively insensitive to temperature ͳͺ�

change if mean annual precipitation decreases beyond -35% of the historical value. The ͳͻ�

classification trees produced demonstrate that climate, soils, vegetation and geomorphology ʹͲ�

(recession) come together in a complex manner to generate different streamflow regimes and ʹͳ�

characteristics. For each indicator, the different branches of the tree represent different states for ʹʹ�

the watershed resulting from combinations of climate and physical characteristics. ʹ͵�

There are three possible ways in which the bottom up approach can assist the decision ʹͶ�

maker. Firstly, the detection of dominant controls on a hydrologic indicator helps the stakeholder ʹͷ�

to assess where investments should be made to attempt to reduce uncertainties. For example, it is ʹ�
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clear from the classification tree of mean annual runoff that the reduction in uncertainty ʹ�

associated with future precipitation is very important. Secondly, the values of adverse climate ʹͺ�

and land use thresholds provide the decision maker with an indication of how robust a watershed ʹͻ�

is to changing conditions. If small changes in climate/land use cause a transition to vulnerable ͵Ͳ�

regimes, a highly risk averse strategy should be followed to tackle such potential future change. ͵ͳ�

Thirdly, studies focusing on impact of climate change on water resources generally neglect the ͵ʹ�

role of land use change while both are likely to occur concurrently in watersheds. We provide ͵͵�

one way to combine both of these stressors in a common framework.  ͵Ͷ�

There are limitations in this study that allow for future improvements. First of all, the ͵ͷ�

exploration of climate space using the delta change method does not allow the stakeholder to ͵�

analyze the impact of changing precipitation characteristics beyond the mean amount (e.g. ͵�

frequency of wet days) on the resultant streamflow indicator. This limits our ability to test how ͵ͺ�

precipitation changes will impact frequency characteristics of streamflow. Use of weather ͵ͻ�

generators that allow the variation in several hydrologically relevant characteristics of ͶͲ�

precipitation could reduce this problem in the future. Also, the modeled impact of land use Ͷͳ�

change in our study is based on percentage of vegetation in the watershed and does not consider Ͷʹ�

the impact of changing leaf area indices on interception or other vegetation related hydrologic Ͷ͵�

impacts.  ͶͶ�

We also show that the classification trees derived using this approach may show some Ͷͷ�

dependence upon the choice of vulnerability thresholds for the hydrologic indicators. Ͷ�

Furthermore, the results presented here are from as single model structure that leaves model Ͷ�

structural uncertainty unaccounted for in our current analysis. However, the framework can Ͷͺ�

potentially incorporate this uncertainty due to its ability to incorporate categorical data that Ͷͻ�
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allows for inclusion of more than one model structures as separate categories of input data. ͷͲ�

Finally, there can be large uncertainties (large misclassification error rates) in the classification ͷͳ�

trees themselves, indicating a complex control on the hydrologic indicator that is not easily ͷʹ�

segregated by using CART. While we have addressed this issue by representing this uncertainty ͷ͵�

visually as histograms at each leaf node, other classification methods (such as random forests) ͷͶ�

can be explored in the future for addressing such cases.  ͷͷ�

In summary, our method allows stakeholders to assess the vulnerability of a watershed to ͷ�

climate and land use change within a hydrologic modeling framework. It provides a novel way to ͷ�

incorporate various sources of information about the watershed’s behavior to assess its response ͷͺ�

to changing climate or land use or both. By combining the results of this approach with available ͷͻ�

climate projections, decisions makers will be better equipped to appraise different alternatives Ͳ�

for future action.  ͳ�

Acknowledgements ʹ�

This research was supported by the Office of Science (BER), US Department of Energy, Grant ͵�

No. DE-FG02-08ER64641 and an EPA STAR Early Career Grant RD834196. This work was Ͷ�

partially supported by the Natural Environment Research Council (Consortium on Risk in the ͷ�

Environment: Diagnostics, Integration, Benchmarking, Learning and Elicitation (CREDIBLE); �

NE/J017450/1). All the data used in the paper has been obtained from free available sources �

cited in the manuscript.  ͺ�



 31

References ͻ�

Arnold, J. G., P.M. Allen, R. Muttiah, and G. Bernhardt (1995), Automated base flow separation Ͳ�

and recession analysis techniques, Ground Water, 33(6), 1010–1018, ͳ�

doi: 10.1111/j.1746584.1995.tb00046. ʹ�

Bai, Y., T. Wagener, and P. Reed (2009), A top-down framework for watershed model ͵�

evaluation and selection under uncertainty, Environ. Modell. Softw., Ͷ�

doi:10.1016/j.envsoft.2008.12.012. ͷ�

Barron, E.J. (2009), Beyond climate science, Science, 326, 643. �

Bennett, K., A. Werner, and M. Schnorbus (2012), Uncertainties in Hydrologic and Climate �

Change Impact Analyses in Headwater Basins of British Columbia, J. Climate, ͺ�

doi:10.1175/JCLI-D-11-00417.1, in press. ͻ�

Beven, K. (2011), I believe in climate change but how precautionary do we need to be in ͺͲ�

planning the future? Hydrol. Process., 25, 1517-1520, doi: 10.1002/hyp.7939. ͺͳ�

Boso, F., F.P.J. de Barros, A. Fiori, and A. Bellin (2013), Performance analysis of statistical ͺʹ�

spatial measures for contaminant plume characterization towards risk-based decision ͺ͵�

making, Water Resour. Res., accepted article, doi: 10.1002/wrcr.20270. ͺͶ�

Bosshard, T., M. Carambia, K. Goergen, S. Kotlarski, P. Krahe, M. Zappa, and C. Schäär ͺͷ�

(2013), Quantifying uncertainty sources in an ensemble of hydrological climate-impact ͺ�

Projections, Water Resour. Res., 49, 1523-1536, doi:10.1029/2011WR011533. ͺ�

Brazil, L.E. (1988), Multilevel calibration strategy for complex hydrologic simulation models, ͺͺ�

PhD thesis, Colorado State University, Fort Collins, Colorado.  ͺͻ�

Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone (1984), Classification and regression ͻͲ�

trees, CRC Press. ͻͳ�



 32

Brown, C., W. Werick, W. Leger, and D. Fay (2011), A Decision-Analytic Approach to ͻʹ�

Managing Climate Risks: Application to the Upper Great Lakes, J. Am. Water Resour. ͻ͵�

As., 47(3), 524-534, doi: 10.1111/j.1752-1688.2011.00552.x. ͻͶ�

Chen, J., F.P. Brissette, A. Poulin, and R. Leconte (2011), Overall uncertainty study of the ͻͷ�

hydrological impacts of climate change for a Canadian watershed, Water Resour. Res., 47, ͻ�

W12509, doi: 10.1029/2011WR010602. ͻ�

Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli,  W.-ͻͺ�

T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. Räisänen, A. ͻͻ�

Rinke, A. Sarr, and P. Whetton (2007), Regional Climate Projections, in Climate Change ͲͲ�

2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Ͳͳ�

Assessment Report of the Intergovernmental Panel on Climate Change edited by S. Ͳʹ�

Solomon, et al., Cambrige, UK, and New York, USA: Cambridge University Press. Ͳ͵�

Collins, M., R.E., Chandler, P.M. Cox, J.M. Huthnance, J. Rougier, and D.B. Stephenson (2012),  ͲͶ�

Quantifying future climate change, Nat. Clim. Chang., 2, 403-409, Ͳͷ�

doi:10.1038/nclimate1414. Ͳ�

Dobler, C., S. Hagemann, R.L. Wilby, and J. Stötter (2012), Quantifying different sources of Ͳ�

uncertainty in hydrological projections at the catchment scale, Hydrol. Earth Syst. Sci. Ͳͺ�

Discuss., 9, 8173-8211, doi: 10.5194/hessd-9-8173-2012. Ͳͻ�

Duan, Q., J. Schaake, V. Andreassian, S. Franks, H.V. Gupta, Y.M. Gusev, F. Habets, A. Hall, L. ͳͲ�

Hay, T.S. Hogue, M. Huang, G. Leavesley, X. Liang, O.N. Nasonova, J. Noilhan, L. ͳͳ�

Oudin, S. Sorooshian, T. Wagener, and E.F. Wood (2006), The Model Parameter ͳʹ�

Estimation Experiment (MOPEX): An overview of science strategy and major results ͳ͵�



 33

from the second 20 and third workshops, J. Hydrol., 320(1–2), 3–17, ͳͶ�

doi:10.1016/j.jhydrol. 2005.07.031. ͳͷ�

Falcone, J. A., D.M. Carlisle, D.M. Wolock, and M.R. Meador (2010), GAGES: A stream gage ͳ�

database for evaluating natural and altered flow conditions in the conterminous United ͳ�

States, Ecology, 91:621. ͳͺ�

Farmer, D., M. Sivapalan, and C. Jothityangkoon (2003), Climate, soil, and vegetation controls ͳͻ�

upon the variability of water balance in temperate and semiarid landscapes: Downward ʹͲ�

approach to water balance analysis, Water Resour. Res., 39(2), 1035. ʹͳ�

Frans, C., E. Istanbulluoglu, V. Mishra, F. Munoz-Arriola, and D.P. Lettenmaier (2013), Are ʹʹ�

climatic or land cover changes the dominant cause of runoff trends in the Upper ʹ͵�

Mississippi River Basin? Geophys. Res. Lett., 40, 1104–1110, doi:10.1002/grl.50262. ʹͶ�

Hall, J. (2007), Probabilistic climate scenarios may misrepresent uncertainty and lead to bad ʹͷ�

adaptation decisions, Hydrol. Process., 21, 1127–1129, doi:10.1002/hyp.6573. ʹ�

Hargreaves, G.H., and Z.A. Samani (1985), Reference crop evapo-transpoiration from ʹ�

temperature, Appl. Eng. Agric., 1(2), 96:99. ʹͺ�

Jones, R.N., H.S.C. Francis, W.C. Boughton, and L. Zhang (2006), Estimating sensitivity of ʹͻ�

mean annual runoff to climate change using selected hydrologic models, Adv. Water ͵Ͳ�

Resour., 29, 1419-1429, doi: 10.1016/j.advwatres.2005.11.001. ͵ͳ�

Kapangaziwiri, E., D.A. Hughes, and T. Wagener (2012), Incorporating uncertainty in ͵ʹ�

hydrological predictions for gauged and ungauged basins in southern Africa, Hydrol. Sci. ͵͵�

J., 57 (5), 1000-1019. ͵Ͷ�



 34

Kay, A.L., H.N. Davies, V.A.  Bell, and R.G. Jones (2009), Comparison of uncertainty sources ͵ͷ�

for climate change impacts: flood frequency in England, Clim. Chang., 92(1–2), 41–63, ͵�

doi: 10.1007/s10584-008-9471-4.�͵�

Khader, A.I., D.E. Rosenberg, and M. McKee (2013), A decision tree model to estimate the ͵ͺ�

value of information provided by a groundwater quality monitoring network, Hydrol. ͵ͻ�

Earth. Syst. Sci., 17, 1797-1807, doi: 10.5194/hess-17-1979-2013. ͶͲ�

Knutti, R., D. Masson, and A. Gettelman (2013), Climate model genealogy: Generation CMIP5 Ͷͳ�

and how we got there, Geophys. Res. Lett., 40, 1194–1199, doi:10.1002/grl.50256. Ͷʹ�

Kollat, J.B., P.M. Reed, and T. Wagener (2013) When are multiobjective calibration tradeoffs in Ͷ͵�

hydrologic models meaningful? Water Resour. Res., 48, W03520, doi: ͶͶ�

10.1029/2011WR011534. Ͷͷ�

Kottegoda, N.T., and R. Rosso (1997), Statistics, probability and reliability for Civil and Ͷ�

Environmental Engineers, McGraw-Hill, U.S.A. Ͷ�

Kunreuther, H., G. Heal, M. Allen, O. Edenhofer, C.B. Field, and G. Yohe (2013), Risk Ͷͺ�

management and climate change, Nat. Clim. Chang., 3, 447-450, doi: Ͷͻ�

10.1038/NCLIMATE1740. ͷͲ�

Lempert, R.J., B.P. Bryant, and S.C. Bankes (2008), Comparing algorithms for scenario ͷͳ�

discovery, Working Paper, WR-557-NSF, RAND Corporation, Santa Monica, California.  ͷʹ�

Manning, L. J., J.W. Hall, H.J. Fowler, C.G. Kilsby, and C. Tebaldi (2009), Using probabilistic ͷ͵�

climate change information from a multimodel ensemble for water resources assessment, ͷͶ�

Water Resour. Res., 45, W11411, doi:10.1029/2007WR006674. ͷͷ�



 35

Maurer, E. P., and P.B. Duffy (2005), Uncertainty in projections of streamflow changes due to ͷ�

climate change in California, Geophys. Res. Lett., 32, L03704, ͷ�

doi:10.1029/2004GL021462. ͷͺ�

Merz, R., J. Parajka, and G. Blöschl (2010), Time stability of catchment model parameters: ͷͻ�

Implications for climate impact analyses, Water Resour. Res., 47, W02531, doi: Ͳ�

10.1029/2010WR009505. ͳ�

Milly, P.C.D., R.T. Wetherald, K.A. Dunne, and T.L. Delworth (2002), Increasing risk of great ʹ�

floods in a changing climate, Nature, 415, 514-517.  ͵�

Moody, P., and C. Brown (2013), Robustness indicators for evaluation under climate change: Ͷ�

application to the Upper Great Lakes, Water Resour. Res., accepted article, doi: ͷ�

10.1002/wrcr.20228. �

Nash, J. E., and J.V. Sutcliffe (1970), River flow forecasting through conceptual models part I — �

A discussion of principles, J. of Hydrol., 10 (3), 282–290. ͺ�

Nash, L.L., and P.H. Gleick (1991), Sensitivity of streamflow in the Colorado basin to climatic ͻ�

changes, J. of Hydrol., 125, 221-241, doi: 10.1016/0022-1694(91)90030-L.  Ͳ�

Ning, L., M.E. Mann, R. Crane, and T. Wagener (2012a), Probabilistic Projections of Climate ͳ�

Change for the Mid-Atlantic Region of the United States: Validation of Precipitation ʹ�

Downscaling during the Historical Era, J. Climate, 25, 509-526, doi: ͵�

10.1175/2011JCLI4091.1. Ͷ�

Ning, L., M.E. Mann, R. Crane, T. Wagener, R.G. Najjar Jr., and R. Singh (2012b), Probabilistic ͷ�

Projections of Climate Change Impacts on Precipitaiton for the Mid-Atlantic Region of �

the United States, J. Climate, 25, 509-526, doi: 10.1175/2011JCLI4091.1. �



 36

Olden, J.D., and N.L. Poff (2003), Redundancy and the choice of hydrologic indices for ͺ�

characterizing streamflow regimes, River Res. Appl., 19, 101-121. ͻ�

Paton, F. L., H.R. Maier, and G.C. Dandy (2013), Relative magnitudes of sources of uncertainty ͺͲ�

in assessing climate change impacts on water supply security for the southern Adelaide ͺͳ�

water supply system, Water Resour. Res., 49, 1643–1667, doi:10.1002/ wrcr.20153. ͺʹ�

Prudhomme, C., and H. Davies (2009a), Assessing uncertainties in climate change impact ͺ͵�

analyses on the river flow regimes in the UK. Part 1: baseline climate, Clim. Chang., ͺͶ�

93: 177–195, doi: 10.1007/s10584-008-9464-3. ͺͷ�

Prudhomme, C., and H. Davies (2009b), Assessing uncertainties in climate change impact ͺ�

analyses on the river flow regimes in the UK. Part 2: future climate, Clim. Chang., ͺ�

93: 197–222, doi: 10.1007/s10584-008-9461-6. ͺͺ�

Sawicz, K., 2013. Catchment classification – understanding hydrologic similarity through ͺͻ�

catchment function. PhD Thesis, The Pennsylvania State University, University Park, ͻͲ�

PA.  ͻͳ�

Son, K., and M. Sivapalan (2007), Improving model structure and reducing parameter ͻʹ�

uncertainty in conceptual water balance models through the use of auxiliary data, Water ͻ͵�

Resour. Res., 43, W01415, doi:10.1029/2006WR005032. ͻͶ�

Singh, R., T. Wagener, K. van Werkhoven, M.E. Mann, and R. Crane (2011), A trading-space-ͻͷ�

for-time approach to probabilistic continuous streamflow predictions in a changing ͻ�

climate – accounting for changing watershed behavior, Hydrol. Earth Syst. Sci., 15, 3591-ͻ�

3603, doi: 10.5194/hess-13591-2011. ͻͺ�



 37

Singh, R., K. van Werkhoven, and T. Wagener (2013), Hydrologic impacts of climate change in ͻͻ�

gaugaed and ungauged watersheds of the Olifants Basin - A trading space-for-time ͺͲͲ�

approach, Hydrol. Sci. J., 59 (1), 29-55, doi: 10.1080/02626667.2013.819431.  ͺͲͳ�

Stephenson, D.B., M. Collins, J.C. Rougier, and R.E. Chandler (2012), Statistical problems in ͺͲʹ�

the probabilistic prediction of climate change, Environmetrics, 23 (5), 364-372, doi: ͺͲ͵�

10.1002/env.2153. ͺͲͶ�

Teng, J., J. Vaze, F.H.S. Chiew, B. Wang, and J.-M. Perraud (2012), Estimating the Relative ͺͲͷ�

Uncertainties Sourced from GCMs and Hydrological Models in Modeling Climate ͺͲ�

Change Impact on Runoff, J. Hydrometeorol., 13, 122–139, ͺͲ�

doi: http://dx.doi.org/10.1175/JHM-D-11-058.1. ͺͲͺ�

Teuling, A. J., A.F. Van Loon, S.I. Seneviratne, I. Lehner, M. Aubinet, B. Heinesch, C. ͺͲͻ�

Bernhofer, T. Grünwald, H. Prasse, and U. Spank (2013), Evapotranspiration amplifies ͺͳͲ�

European summer drought, Geophys. Res. Lett., 40, doi:10.1002/grl.50495. ͺͳͳ�

Therneau, T.M., and E.J. Atkinson (1997), An introduction to recursive partitioning using the ͺͳʹ�

RPART routines, Technical Report 61, Mayo Clinic, Section of Statistics. Accessed ͺͳ͵�

online on 24th January 2014 from: http://www.mayo.edu/hsr/techrpt/61.pdf  ͺͳͶ�

Van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang (2008), Characterization of watershed ͺͳͷ�

model behavior across a hydroclimatic gradient, Water Resour. Res., 44, W01429, ͺͳ�

doi:10.1029/2007WR006271. ͺͳ�

Wagener, T., M. Sivapalan, P.A. Troch, B.L. McGlynn, C.J. Harman, H.V. Gupta, P. Kumar, ͺͳͺ�

P.S.C. Rao, N.B. Basu, and J.S. Wilson (2010), The future of hydrology: an evolving ͺͳͻ�

science for a changing world, Water Resour. Res., 46, W05301, doi: ͺʹͲ�

10.1029/2009WR008906 ͺʹͳ�



 38

Weaver, C.P., R.J. Lempert, C. Brown, J.A. Hall, D. Revell, and D. Sarewtiz (2013), Improving ͺʹʹ�

the contribution of climate model information to decision making: the value and demands ͺʹ͵�

of robust decision frameworks, WIREs Clim. Change., 4, 39-60, doi: 10.1002/wcc.202. ͺʹͶ�

Wilby, R. L., and I. Harris (2006), A framework for assessing uncertainties in climate change ͺʹͷ�

impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, ͺʹ�

W02419, doi:10.1029/2005WR004065. ͺʹ�

Wilby, R.L., and S. Dessai (2010), Robust adaptation to climate change, Weather, 65(7), 180-ͺʹͺ�

185, doi: 10.1002/wea.543. ͺʹͻ�

Xu, C.-y., E. Wildén, and S. Halldin (2005), Modelling Hydrological Consequences of Climate ͺ͵Ͳ�

Change – Progress and Challenges, Adv. Atmos. Sci., 22 (6), 789-797, doi: ͺ͵ͳ�

10.1007/BF02918679. ͺ͵ʹ�

Zhao, R.J., Y.L. Zhang, L.R. Fang, X.R. Liu, and Q.S. Zhang (1980), The Xinanjiang model, in, ͺ͵͵�

Hydrological Forecasting, IASH Publ., 129, 351-356. ͺ͵Ͷ�

ͺ͵ͷ�



 39

List of Tables ͺ͵�

Table 1 Definition of hydrologic indicators analyzed in the study based on Olden and Poff ͺ͵�

[2003]Ǥ ͺ͵ͺ�

Table 2 Feasible and a-priori ranges of the hydrologic model parameters. ͺ͵ͻ�

Table 3 List of general circulation models (GCMs) that are used for statistically downscaling the ͺͶͲ�

precipitation and temperature data. The data is downscaled for baseline (1961-2000) and end of ͺͶͳ�

century (2081-2100) for A2 emission scenario. ͺͶʹ�

List of Figures ͺͶ͵�

Figure 1 (a) The hydro-climatic framework showing the traditional forward propagation ͺͶͶ�

approach used to derive future changes in hydrologic variables of interest (b) The bottom-up ͺͶͷ�

approach used in this study, which starts by defining different (slightly vulnerable/vulnerable/ ͺͶ�

non-vulnerable etc.) classes for a hydrologic indictor of interest and then identifying the regions ͺͶ�

in the input space that lead to each class. ͺͶͺ�

Figure 2 The exploratory modelling framework used in this study. We explore a space spanned ͺͶͻ�

by NxP climate and hydrologic model parameter combinations. For this study, N is a ͺͷͲ�

combination of 11 precipitation changes ranging from -50% to +50% in increments of 10% and 9 ͺͷͳ�

temperature changes ranging from +0°C to +8°C, resulting in 99 climates spanning the range of ͺͷʹ�

dry/hot to wet/cold climates. Number of parameter sets, P is fixed at 10000 randomly generated ͺͷ͵�

sets of hydrologic model parameters. Therefore, in total, for each hydrologic indicator, we ͺͷͶ�

explored a combined space of 990,000 points. We use classification and regression trees (CART) ͺͷͷ�

to relate the resultant streamflow indicators from the NxP climate-parameter combinations to the ͺͷ�

classes defined on the right hand side.  ͺͷ�



 40

Figure 3 Top down model structure used in the study. The model has representations for snow ͺͷͺ�

and vegetation. The soil depth is modelled as a probability distribution of 10 buckets reflecting ͺͷͻ�

variable soil depths. ͺͲ�

Figure 4 Study area: The Lower Juniata watershed and the location of the streamflow gauge. ͺͳ�

Figure 5 Method for defining the different classes for hydrologic indicator values. Example is ͺʹ�

shown for low flow pulse duration. First a 10-year running window from 1948-2002 is used to ͺ͵�

obtain 45 values for each period. The range across these values is used to derive the mean and ͺͶ�

standard deviation for the indicator values. Then the classes are defined based on the mean and ͺͷ�

standard deviation estimates as explained in the text. ͺ�

Figure 6 (a) Class assignment for flood frequency indicator. The grey markers represent the ͺ�

historically observed values of the indicator. W is the width of the classes. (b) Classification tree ͺͺ�

for flood frequency for class width of 4 S.D, and (c) 6 S.D. Class probabilities associated with ͺͻ�

classes 1 to 7 are represented by vertical bars at each node of the tree. Solid black lines represent ͺͲ�

the paths to vulnerability. Classes C2, C3 and C6 represent classes for increased values of high ͺͳ�

flood frequency, and are assumed to be vulnerable. Pratio is the ratio of future mean annual ͺʹ�

precipitation to the historical mean annual precipitation, so a value greater than 1 show an ͺ͵�

increase in mean annual precipitation and vice versa. ǻT is the increase in mean annual ͺͶ�

temperature in the future period from the historical period. Sb is the maximum height of soil ͺͷ�

moisture bucket and Ass is the recession coefficient from the saturated subsurface soil reservoir.   ͺ�

Figure 7 Combined impact of land use and climate change in the watershed for (a) Mean annual ͺ�

runoff and (b) maximum August flow. For both cases, there is only 1 path that can lead to the ͺͺ�

historically observed indicator range  based on historical climate and land use, highlighted by ͺͻ�



 41

black lines in each tree. The left panel shows the case when fraction of deep-rooted vegetation is ͺͺͲ�

fixed within historical range (0.6 to 0.8) and only climate is varied. Here, the black line follows ͺͺͳ�

the combinations of precipitation, and temperature that represent the climate of the watershed in ͺͺʹ�

the historical period. The right panel shows the case of varying fraction of deep-rooted ͺͺ͵�

vegetation (0 to 1) and climate together. Here, the black line follows the combinations of ͺͺͶ�

precipitation, temperature, and deep-rooted vegetation cover that represent the climate and forest ͺͺͷ�

cover of the watershed in the historical period. Both decision trees show that deep-rooted ͺͺ�

vegetation cover is a critical control on the hydrologic indicator. Pratio is the ratio of future mean ͺͺ�

annual precipitation to the historical mean annual precipitation, so a value greater than 1 shows ͺͺͺ�

an increase and vice versa. ¨T is the difference between the future temperature and historical ͺͺͻ�

mean annual temperature. %Vg is the percentage of deep-rooted vegetation in the watershed. B ͺͻͲ�

and Sb, are hydrologic model parameters representing the soil moisture accounting module.  ͺͻͳ�

Figure 8 Dominant controls on hydrologic indicators across climate (precipitation and ͺͻʹ�

temperature), fraction of deep-rooted vegetation (%Veg), soil parameters and recession (routing) ͺͻ͵�

parameters for (a) Feasible parameter range (b) a priori parameter range with fraction of deep ͺͻͶ�

rooting vegetation in historical range (0.6-0.8) and (c) a priori parameter range with fraction of ͺͻͷ�

deep-rooted vegetation varying between 0 and 1. ͺͻ�

Figure 9 (a) CART result for flood frequency with class width (W) set at 4 standard deviations ͺͻ�

(b) Representing parametric uncertainty based on historical streamflow data using top 19 ͺͻͺ�

parameter sets satisfying NSE>0.75 and bias error <10%. The diamonds represent the cutoff ͺͻͻ�

value chosen by the classification tree for the indicator in (a). Feasible parameter values falling ͻͲͲ�

above and below A/B imply that there is uncertainty in deciding the terminal node to which the ͻͲͳ�

indicator belongs. ͻͲʹ�
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Figure 10 (a) Future ranges for precipitation and temperature change based on downscaled ͻͲ͵�

climate data. Precipitation change (Pratio) is expressed as the ratio of mean annual precipitation ͻͲͶ�

for end of century (2090-2100) projections to mean annual precipitation in the baseline (1990-ͻͲͷ�

2000) period. Temperature change (¨T) is expressed as the difference between mean annual ͻͲ�

temperatures for end of century (2090-2100) projections to mean annual temperature in the ͻͲ�

baseline (1990-2000) period. (b) Classification tree for mean annual runoff. The black lines in ͻͲͺ�

(b) represent the future classes for mean annual streamflow derived from navigating the ͻͲͻ�

classification tree in (b) using precipitation and temperature changes in (a). (c) Projections of ͻͳͲ�

streamflow obtained by the traditional top-down approach by driving the hydrologic model ͻͳͳ�

directly with the future precipitation and temperature time series. 19 parameter sets fixed at their ͻͳʹ�

historically calibrated values are used. We compare the projections of mean annual streamflow ͻͳ͵�

derived from the bottom-up CART analysis in (b) to those derived directly from the top-down ͻͳͶ�

method using statistically downscaled GCM output (c).   ͻͳͷ�

Figure 11 Visualizing 200 randomly selected parameters and climate combinations that lead to ͻͳ�

Classes 1-5 for mean annual runoff. The horizontal bar plots on each subplot is the histogram for ͻͳ�

that particular parameter/climate variable. We find that precipitation and temperature changes ͻͳͺ�

mainly control the mean annual runoff. Fraction of deep-rooted vegetation (%Veg) is fixed at the ͻͳͻ�

historical values in this plot, therefore does not emerge as an important influence. ¨T and ¨P are ͻʹͲ�

mean annual precipitation and temperature changes. Ddf to Abf are the hydrologic model ͻʹͳ�

parameters whose ranges are fixed at the a-priori range.  ͻʹʹ�
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Hydrologic 
Indicator 

Category Definition Units 

Mean annual 
runoff 

Magnitude Mean annual flow (normalized by 
catchment area) 

mm/year 

Minimum April 
flow 

Magnitude- 
high 

Mean minimum monthly flow for April 
across time period of study 

mm/day 

Maximum 
August flow 

Magnitude-low Mean maximum monthly flow for August 
across time period of study 

mm/day 

Low flow pulse 
count 

Frequency – 
low 

Number of annual occurrences during 
which the magnitude of flow remains 
below a lower threshold. Hydrologic 

pulses are defined as those periods within 
a year in which the flow drops below 25th 
percentile of all daily values for the time 

period 

[-] 

Flood frequency Frequency – 
high 

Same as above where high pulse is defined 
as 3 times the median daily flow 

[-] 

Low flow pulse 
duration 

Duration – low Mean duration of low flow pulses defined 
above 

[days] 

High flow pulse 
duration  

Duration – high Mean duration of high flow pulses with 
high flow cutoff at 75th percentile of the 

daily flows of the entire record 

[days] 

Seasonal 
predictability of 

non-flooding 

Timing of 
change 

Maximum proportion the year (number of 
days/365) during which no floods have 
ever occurred over the period of record. 

Floods are defined as flow values greater 
than or equal to flows with 60% 

exceedance probability (1.67 year return 
interval) 

[-] 

Reversals Rate of change Number of negative and positive changes 
in water conditions from one day to the 

next 

[-] 

  ͻʹ͵�
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 Description 
Feasible range Reduced a-priori 

range[d] UNITS 
Lower Upper Lower Upper 

Soil Sb 
Max height of soil 

store 
0 2000[a] 290 810 

[mm] 

 B 
Distribution of 

buckets 
0 7[a]   

[-] 

 FC 
Field capacity 

parameter 
0 1 0.24 0.96 

[-] 
 Kd  0 0.5[c]   [-] 

Vegetation %Veg 
Deep-rooted 

vegation 
0 1 0.6 0.8 

[-] 

 LAImax
Maximum leaf area 

index 
0 6 0 6 

[mm] 

 LAImin 
Minimum leaf area 

index 
0 6 0 6 

[mm] 

Routing ASS 
Recession 

coefficient for 
saturated soil 

1 20[b] 6 14 
[days-1] 

 ABF 
Recession 

coefficient for 
ground water 

20 200[b] 50 83 
[days-1] 

Snow Ddf Degree day factor 0 20[a]   [mm °C-1 d-1] 

 Tth 
Threshold 

temperature for 
snow formation 

-5 5[a]   
[°C] 

 Tb 
Base temperature 

for melt 
-5 5[a]   

[°C] 
    [a] Kollat et al., [2013] ͻʹͶ�
    [b] Van Werkhoven et al., [2008] ͻʹͷ�
    [c] Farmer et al., [2003] ͻʹ�
    [d] Appendix B and Section 3.1� �ͻʹ�
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No Abbreviation CMIP3 I.D. Origination group Country 
1 CGCM3.1 CGCM3.1 

(T47) 
Canadian Centre for Climate 

Modelling and Analysis Canada 

2 CM3 CNRM-CM3 Météo-France/Centre 
National de Recherches 
Météorolgiques 

France 

3 MK3.0 CSIRO-MK3.0 CSIRO Atmospheric 
Research Australia 

4 CM2.0 GFDL-2.0 US Dept. of Commerce/ 
NOAA/Geophysical Fluid 
Dynamics Laboratory 

USA 

5 GISS GISS-ER NASA/ Goddard Institute for 
Space Studies USA 

6 CM4 IPSL-CM4 Institute Pierre Simon Laplace France 
7 ECHOG ECHO-G Meteorological Institute of the 

University of Bonn, 
Meteorological Research 
Institute of KMA, and 
Model and Data group 

Germany 
    Korea 

8 ECHAM5 ECHAM5/MPI   
-OM 

Max Planck Institute of 
Meteorology Germany 

9 CGCM2.3.2a MRI-
CGCM2.3.2a 

Meteorological Research 
Institute Japan 

� �ͻʹͺ�
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