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Kravtsov et al. claim that we incorrectly assess the statistical independence of simulated
samples of internal climate variability and that we underestimate uncertainty in our
calculations of observed internal variability. Their analysis is fundamentally flawed, owing
to the use of model ensembles with too few realizations and the fact that no one model can
adequately represent the forced signal.

K
ravtsov et al. (1) wrongly claim (i) that
our assertion of statistical independence
among estimates of the internal varia-
bility in regional temperature change in
climatemodels (2) is an artifact of a flawed

procedure. They further suggest (ii) that robust
assessments of simulated internal variability can-
not rely onamultimodel ensemblemean (MMEM)
that differs from the true forced signal of the in-
dividual models, because the residuals of the two
forced signals masquerade as low-frequency in-
ternal variability, which leads to correlation among
ensemble members. Finally, they claim (iii) that
we substantially underestimate the uncertainty
in the semi-empirical estimate of internal varia-
bility derived using the MMEM to approximate
the forced signal.
Regarding their first point, Kravtsov et al.

assert (in their second reference/note) that the
standard deviation of the mean of internal var-
iability is not exactly zero only because the data
were filtered before analysis [figure 2 and figures
S2 to S4 in (2)]. This is true, however, only if the
full ensemble of realizations, N, is used in the
calculation. If (N – 1) realizations are instead used,
as is the case in our analysis, the standard devia-
tion of themean is not zero (regardless of whether
the data are filtered beforehand) (3). Our method
for assessing statistical independence is valid.
Regarding their second point, Kravtsov et al.

claim that internal variability calculated using the
regional regression method and a scaled MMEM

introduces errors because each model has a dif-
ferent forced response. Instead, they use a single-
model ensemble mean (SMEM) for models with
four or more historical runs and show that the
internal variability calculated in this manner has
a lower variance and lower intramodel correla-
tion than that determined using aMMEM [figure
1, A to F, in (1)]. They assert that this occurs be-
cause the difference between theMMEM and the
true forced signal for individual models introdu-
ces extra internal variability at low frequencies.
Although this could be true in principle, this
point is irrelevant because the ensembles of sim-
ulated internal variability determined using re-
gional regression nevertheless universally satisfy
the requirements for statistical independence
[figure 2 in (2)].
Moreover, we show that more than four (in-

deed, more than 10) ensemble members are re-
quired for a robust estimate of the forced signal
from a SMEM, and thus the lower variance of the
internal variability estimates is due to the small
ensemble size, which leads to the removal of too
much of the internal variability. We demonstrate
this point using synthetic autoregressive-1 time
series (Fig. 1, A and B), each with the same forced
signal, and a different realization of red noise (4).
We divide the 160-member ensemble into subsets
of four- or ten-member ensembles, which were
smoothed using a 5-year low-pass filter. Using the
code provided by Kravtsov et al., we show that the
application of small ensemble SMEMs results in
lower variance of internal variability (Fig. 1A),
even though in this case we know that the large
ensemble yields a far more accurate estimate of
the forced signal (Fig. 1B). This idealized example
reveals that the higher variance obtained when
using theMMEMrelative to using the SMEM is in
fact due to the removal of too much internal
variability when using the SMEM.
Regarding their third point, Kravtsov et al.

claim that there is a wide range of possible semi-

empirical estimates of observed internal varia-
bility resulting from the range of possible SMEM
estimates of the forced signal. They attempt to
assess the uncertainty in the Atlantic Multi-
decadal Oscillation (AMO), Pacific Multidecadal
Oscillation (PMO), and Northern Hemisphere
Multidecadal Oscillation (NMO) by applying the
mean of individual model ensembles with four
or more realizations and claim that the resulting
spread of these separate estimates defines un-
certainty inherent in the regional regression
method (5). However, as we have shown, none
of these SMEMs is in itself a robust estimate of
the forced signal, because none of the models
have enough ensemble members for suitable
cancellation of the different realizations of
internal variability [which also explains the
narrow 2s range in their figure 1, G to I (1)].
More importantly, it is unreasonable to expect
an individual model to have a better represen-
tation of the forced signal than the multimodel
ensemble. In fact, the spread in the internal
variability estimates of Kravtsov et al. [figure 1,
G to I in (1)] supports this assertion, indicating
that regional regression–based estimates of in-
ternal variability and their uncertainties are
intrinsically dependent on the choice of the forced
signal and therefore that only robust estimates
derived from a large number of models or real-
izations should be used for this assessment.
The MMEMs from the Coupled Model Inter-
comparison Project Phase 5 [CMIP5-All (all mod-
els) and CMIP5-AIE (models that include the
first and second aerosol indirect effects)] applied
in our study fulfill these requirements, whereas
the SMEMs do not. By this rationale, the CMIP5-
All mean provides the best overall estimate of
the forced signal, with an uncertainty that can be
estimated (among other methods) using boot-
strap resampling [figure 3C in (2)].
Although the use of SMEMs based on a small

number of realizations is an inherently flawed
method, we nonetheless show that both the
MMEM and SMEM regression-based methods
provide better estimates of the internal signal
than simple linear detrending, which produces a
large overestimation of the variance of the in-
ternal variability, especially in recent decades [ma-
genta curves in Fig. 1, A and C, and figure 1, G
to I in (1)]. Indeed, this is one of the key points of
our original Report and is a principal focus of
Frankcombe et al. (6). This recent study concludes
that linear detrending introduces large biases in
both the amplitude and phase of the internal
variability and that regression-based approaches
that rely on large historical simulation ensembles
to estimate the forced signal produce less biased
estimates of internal variability.
The use of different MMEM and large ensem-

ble SMEM estimates of the forced series (5) pro-
duces internal variability trends that are generally
consistent [see figure 3 and figure S6 in (2)]. For
example, the AMO, PMO, andNMObehavior over
the most recent two decades are in each case
largely similar to one another (e.g., in the most
recent decade: PMOdecreasing, NMOdecreasing,
AMO flat) (7) and inconsistent with estimates of
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internal variability derived from simple statistical
methods (i.e., detrending, with the exception of,
perhaps, the PMO). Furthermore, the principal
conclusions of Steinman et al. (2) (regarding
the recent slowdown in surface warming) have
been supported by at least eight other promi-
nent studies (8–15), of which the most recent
(15) uses a semi-empirical method (in which
the forced signal is estimated using a MMEM)
that is very similar to the target region regres-
sion method of Steinman et al. (2).
In short, we find no merit to the criticisms of

Kratsov et al. We once again emphasize that the
linear detrending procedure used in their past
work (16) leads to extremely biased estimates of
internal variability and should not be employed.
Our regression-based approach (2, 6), by contrast,
yields faithful estimates of the internal variability.
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Fig. 1. Estimates of AMO variance based on ensemble size and smoothing
window. (A) The variance of internal variability in synthetic AMO time series
produced using the same forced signal and different realizations of red noise.
The mean variance (solid lines) and 2s range (dashed lines) of the large
ensemble (red, 160 members) and small ensembles (green, 10 members; blue,
4 members) are shown as a function of the time-averaging window size. The
small ensembles consist of random groupings taken from the large ensemble.
Also shown are the variance of the original synthetic time series (not including
the forced signal; black, almost coinciding with the red curve) and the variance
obtained after linear detrending (magenta). (B) Individual estimates of the

forced signal from the large and small ensembles means [colors as in (A)]
shown with the true forced signal (black). Note the extremely high level of
agreement between the large ensemble mean and the true forced signal
relative to that of the small ensemble means. The synthetic time series
(including the forced signal) are shown in gray. (C) The variance of semi-
empirical estimates of AMO variability from the 18 CMIP5 models considered
in Kravtsov et al. using multimodel ensemble mean regression (red), individual
model ensemble mean subtraction (blue), and linear detrending (magenta).
Ensemble mean variance (solid lines) and 2s ranges (dashed lines) are shown
as a function of the time-averaging window size.
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