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Spatially resolved global reconstructions of annual surface temperature patterns over the past sixcenturies are based
on the multivariate calibration of widely distributed high-resolution proxy climate indicators. Time-dependent
correlationsof the reconstructionswith time-series records representingchanges ingreenhouse-gasconcentrations,
solar irradiance, and volcanic aerosols suggest that each of these factors has contributed to the climate variability of
the past 400 years, with greenhouse gases emerging as the dominant forcing during the twentieth century. Northern
Hemispheremean annual temperatures for three of the past eight years arewarmer than anyother year since (at least)
AD 1400.

Knowing both the spatial and temporal patterns of climate change
over the past several centuries remains a key to assessing a possible
anthropogenic impact on post-industrial climate1. In addition to
the possibility of warming due to increased concentrations of
greenhouse gases during the past century, there is evidence that
both solar irradiance and explosive volcanism have played an
important part in forcing climate variations over the past several
centuries2,3. The unforced ‘natural variability’ of the climate system
may also be quite important on multidecadal and century
timescales4,5. If a faithful empirical description of climate variability
could be obtained for the past several centuries, a more confident
estimation could be made of the roles of different external forcings
and internal sources of variability on past and recent climate.
Because widespread instrumental climate data are available for
only about one century, we must use proxy climate indicators
combined with any very long instrumental records that are available
to obtain such an empirical description of large-scale climate
variability during past centuries. A variety of studies have sought
to use a ‘multiproxy’ approach to understand long-term climate
variations, by analysing a widely distributed set of proxy and
instrumental climate indicators1,5–8 to yield insights into long-
term global climate variations. Building on such past studies, we
take a new statistical approach to reconstructing global patterns of
annual temperature back to the beginning of the fifteenth century,
based on the calibration of multiproxy data networks by the
dominant patterns of temperature variability in the instrumental
record.

Using these statistically verifiable yearly global temperature
reconstructions, we analyse the spatiotemporal patterns of climate
change over the past 500 years, and then take an empirical approach
to estimating the relationship between global temperature changes,
variations in volcanic aerosols, solar irradiance and greenhouse-gas
concentrations during the same period.

Data
We use a multiproxy network consisting of widely distributed high-
quality annual-resolution proxy climate indicators, individually
collected and formerly analysed by many palaeoclimate researchers
(details and references are available: see Supplementary Informa-
tion). The network includes (Fig. 1a) the collection of annual-
resolution dendroclimatic, ice core, ice melt, and long historical
records used by Bradley and Jones6 combined with other coral, ice
core, dendroclimatic, and long instrumental records. The long

instrumental records have been formed into annual mean anoma-
lies relative to the 1902–80 reference period, and gridded onto a
58 3 58 grid (yielding 11 temperature grid-point series and 12
precipitation grid-point series dating back to 1820 or earlier) similar
to that shown in Fig. 1b. Certain densely sampled regional den-
droclimatic data sets have been represented in the network by a
smaller number of leading principal components (typically 3–11
depending on the spatial extent and size of the data set). This form
of representation ensures a reasonably homogeneous spatial sam-
pling in the multiproxy network (112 indicators back to 1820).

Potential limitations specific to each type of proxy data series
must be carefully taken into account in building an appropriate
network. Dating errors in a given record (for example, incorrectly
assigned annual layers or rings) are particularly detrimental if
mutual information is sought to describe climate patterns on a
year-by-year basis. Standardization of certain biological proxy
records relative to estimated growth trends, and the limits of
constituent chronology segment lengths (for example, in dendro-
climatic reconstructions), can restrict the maximum timescale of
climate variability that is recorded9, and only a limited subset of the
indicators in the multiproxy network may thus ‘anchor in’ the
longest-term trends (for example, variations on timescales greater
than 500 years). However, the dendroclimatic data used were
carefully screened for conservative standardization and sizeable
segment lengths. Moreover, the mutual information contained in
a diverse and widely distributed set of independent climate indica-
tors can more faithfully capture the consistent climate signal that is
present, reducing the compromising effects of biases and weak-
nesses in the individual indicators.

Monthly instrumental land air and sea surface temperature10

grid-point data (Fig. 1b) from the period 1902–95 are used to
calibrate the proxy data set. Although there are notable spatial
gaps, this network covers significant enough portions of the globe to
form reliable estimates of Northern Hemisphere mean temperature,
and certain regional indices of particular importance such as the
‘NINO3’ eastern tropical Pacific surface temperature index often
used to describe the El Niño phenomenon. The NINO3 index is
constructed from the eight grid-points available within the con-
ventional NINO3 box (58 S to 58 N, 90–1508 W).

Multiproxy calibration
Although studies have shown that well chosen regional paleoclimate
reconstructions can act as surprisingly representative surrogates for
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large-scale climate11–13, multiproxy networks seem to provide the
greatest opportunity for large-scale palaeoclimate reconstruction6

and climate signal detection1,5. There is a rich tradition of multi-
variate statistical calibration approaches to palaeoclimate recon-
struction, particularly in the field of dendroclimatology where
the relative strengths and weaknesses of various approaches to
multivariate calibration have been well studied14,15. Such approaches
have been applied to regional dendroclimatic networks to recon-
struct regional patterns of temperature16,17 and atmospheric circula-
tion18–20 or specific climate phenomena such as the Southern
Oscillation21. Largely because of the inhomogeneity of the informa-
tion represented by different types of indicators in a true ‘multi-
proxy’ network, we found conventional approaches (for example,
canonical correlation analysis, CCA, of the proxy and instrumental
data sets) to be relatively ineffective. Our approach to climate
pattern reconstruction relates closely to statistical approaches
which have recently been applied to the problem of filling-in
sparse early instrumental climate fields, based on calibration of

the sparse sub-networks against the more widespread patterns of
variability that can be resolved in shorter data sets22,23. We first
decompose the twentieth-century instrumental data into its domi-
nant patterns of variability, and subsequently calibrate the indivi-
dual climate proxy indicators against the time histories of these
distinct patterns during their mutual interval of overlap. One can
think of the instrumental patterns as ‘training’ templates against
which we calibrate or ‘train’ the much longer proxy data (that is, the
‘trainee’ data) during the shorter calibration period which they
overlap. This calibration allows us to subsequently solve an ‘inverse
problem’ whereby best estimates of surface temperature patterns are
deduced back in time before the calibration period, from the
multiproxy network alone.

Implicit in our approach are at least three fundamental assump-
tions. (1) The indicators in our multiproxy trainee network are
linearly related to one or more of the instrumental training patterns.
In the relatively unlikely event that a proxy indicator represents a
truly local climate phenomenon which is uncorrelated with larger-
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Figure 1 Data used in this study. a, Distribution of annual-resolution proxy

indicators used in this study. Dendroclimatic reconstructions are indicated by

‘tree’symbols, ice core/ice melt proxies by ‘star’symbols and coral records by ‘C’

symbols. Long historical records and instrumental ‘grid-points’ series are shown

by squares (temperature) or diamonds (precipitation). Groups of ‘þ’ symbols

indicate principal components of dense tree-ring sub-networks, with the number

of such symbols indicating the number of retained principal components. Sites

are shown dating back to at least 1820 (red),1800 (blue-green),1750 (green),1600

(blue) and 1400 (black). Certain sites (for example, the Quelccaya ice core) consist

of multiple proxy indicators (for example, multiple cores, and both d18O isotope

and accumulation measurements). b, Distribution of the 1,082 nearly continuous

available land air/sea surface temperature grid-point data available from 1902

onward, indicated by shading. The squares indicate the subset of 219 grid-points

with nearly continuous records extending back to 1854 that are used for verifica-

tion. Northern Hemisphere (NH) and global (GLB) mean temperature are esti-

mated as areally weighted (that is, cosine latitude) averages over the Northern

Hemisphere and global domains respectively.

Figure 2 Empirical orthogonal functions (EOFs) for the five leading eigenvectors

of the global temperature data from 1902 to 1980. The gridpoint areal weighting

factor used in the PCA procedure has been removed from the EOFs so that

relative temperature anomalies can be inferred from the patterns.
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scale climate variations, or represents a highly nonlinear response
to climate variations, this assumption will not be satisfied. (2) A
relatively sparse but widely distributed sampling of long proxy and
instrumental records may nonetheless sample most of the relatively
small number of degrees of freedom in climate patterns at inter-
annual and longer timescales. Regions not directly represented in
the trainee network may nonetheless be indirectly represented
through teleconnections with regions that are. The El Niño/South-
ern Oscillation (ENSO), for example, shows global-scale patterns of
climatic influence24, and is an example of a prominent pattern of
variability which, if captured, can potentially describe variability in
regions not directly sampled by the trainee data. (3) Patterns of
variability captured by the multiproxy network have analogues in
the patterns we resolve in the shorter instrumental data. This last
assumption represents a fairly weak ‘stationarity’ requirement—we
do not require that the climate itself be stationary. In fact, we expect
that some sizeable trends in the climate may be resolved by our
reconstructions. We do, however, assume that the fundamental
spatial patterns of variation which the climate has shown during
the past century are similar to those by which it has varied during
past recent centuries. Studies of instrumental surface-temperature
patterns suggest that such a form of stationarity holds up at least on
multidecadal timescales, during the past century23. The statistical
cross-validation exercises we describe later provide the best evidence
that these key underlying assumptions hold.

We isolate the dominant patterns of the instrumental surface-
temperature data through principal component analysis25 (PCA).
PCA provides a natural smoothing of the temperature field in terms
of a small number of dominant patterns of variability or ‘empirical
eigenvectors’. Each of these eigenvectors is associated with a char-
acteristic spatial pattern or ‘empirical orthogonal function’ (EOF)
and its characteristic evolution in time or ‘principal component’
(PC). The ranking of the eigenvectors orders the fraction of variance
they describe in the (standardized) multivariate data during the
calibration period. The first five of these eigenvectors describe a
fraction b ¼ 0:93 (that is, 93%) of the global-mean (GLB) tem-
perature variations, 85% of the Northern Hemisphere-mean (NH)
variations, 67% of the NINO3 index, and 76% of the non-trend-
related (DETR) NH variance (see Methods for a description of the b
statistic used here as a measure of resolved variance). A sizeable
fraction of the total multivariate spatiotemporal variance (MULT)
in the raw (instrumental) data (27%) is described by these five
eigenvectors, or about 30% of the standardized variance (no.
1 ¼ 12%, no. 2 ¼ 6:5%, no. 3 ¼ 5%, no. 4 ¼ 4%, no. 5 ¼ 3:5%).
Figure 2 shows the EOFs of the first five eigenvectors. The associated
PCs and their reconstructed counterparts (RPCs) are discussed in
the next section. The first eigenvector, associated with the significant
global warming trend of the past century, describes much of the
variability in the global (GLB ¼ 88%) and hemispheric (NH ¼
73%) means. Subsequent eigenvectors, in contrast, describe much
of the spatial variability relative to the large-scale means (that is,
much of the remaining MULT). The second eigenvector is the
dominant ENSO-related component, describing 41% of the vari-
ance in the NINO3 index. This eigenvector shows a modest negative
trend which, in the eastern tropical Pacific, describes a ‘La Niña’-like
cooling trend26, which opposes warming in the same region asso-
ciated with the global warming pattern of the first eigenvector. The
third eigenvector is associated largely with interannual-to-decadal
scale variability in the Atlantic basin and carries the well-known
temperature signature of the North Atlantic Oscillation (NAO)27

and decadal tropical Atlantic dipole28. The fourth eigenvector
describes a primarily multidecadal timescale variation with
ENSO-scale and tropical/subtropical Atlantic features, while the
fifth eigenvector is dominated by multidecadal variability in the
entire Atlantic basin and neighbouring regions that has been widely
noted elsewhere29–34.

We calibrate each of the indicators in the multiproxy data

network against these empirical eigenvectors at annual-mean reso-
lution during the 1902–80 training interval. Although the season-
ality of variability is potentially important—many extratropical
proxy indicators, for example, reflect primarily warm-season
variability6,7—we seek in the present study to resolve only annual-
mean conditions, exploiting the seasonal climate persistence, and
the fact that the mutual information from data reflecting various
seasonal windows should provide complementary information
regarding annual mean climate conditions10. Following this calibra-
tion, we apply an overdetermined optimization procedure to
determine the best combination of eigenvectors represented by
the multiproxy network back in time on a year-by-year basis, with
a spatial coverage dictated only by the spatial extent of the instru-
mental training data. From the RPCs, spatial patterns and all
relevant averages or indices can be readily determined. The details
of the entire statistical approach are described in the Methods
section.

The skill of the temperature reconstructions (that is, their
statistical validity) back in time is established through a variety
of complementary independent cross-validation or ‘verification’
exercises (see Methods). We summarize here the main results of
these experiments (details of the quantitative results of the calibra-
tion and verification procedures are available; see Supplementary
Information).

(1) In the reconstructions from 1820 onwards based on the full
multiproxy network of 112 indicators, 11 eigenvectors are skilfully
resolved (nos 1–5, 7, 9, 11, 14–16) describing ,70–80% of the
variance in NH and GLB mean series in both calibration and
verification. (Verification is based here on the independent 1854–
1901 data set which was withheld; see Methods.) Figure 3 shows the
spatial patterns of calibration b, and verification b and the squared
correlation statistic r2, demonstrating highly significant reconstruc-
tive skill over widespread regions of the reconstructed spatial
domain. 30% of the full spatiotemporal variance in the gridded
data set is captured in calibration, and 22% of the variance is verified
in cross-validation. Some of the degradation in the verification
score relative to the calibration score may reflect the decrease in
instrumental data quality in many regions before the twentieth
century rather than a true decrease in resolved variance. These
scores thus compare favourably to the 40% total spatiotemporal
variance that is described by simply filtering the raw 1902–80
instrumental data with 11 eigenvectors used in calibration, suggest-
ing that the multiproxy calibrations are describing a level of variance
in the data reasonably close to the optimal ‘target’ value. Although a
verification NINO3 index is not available from 1854 to 1901,
correlation of the reconstructed NINO3 index with the available
Southern Oscillation index (SOI) data from 1865 to 1901 of
r ¼ 2 0:38 (r2 ¼ 0:14) compares reasonably with its target value
given by the correlation between the actual instrumental NINO3
and SOI index from 1902 to 1980 (r ¼ 2 0:72). Furthermore, the
correspondence between the reconstructed NINO3 index warm
events and historical35 El Niño chronology back to 1820 (see
Methods) is significant at the 98% level.

(2) The calibrations back to 1760, based on 93 indicators,
continue to resolve at least nine eigenvectors (nos 1–5, 7, 9, 11,
15) with no degradation of calibration or verification resolved
variance in NH, and only slight degradation in MULT (calibration
,27%, verification ,17%). Our reconstructions are thus largely
indistinguishable in skill back to 1760.

(3) The network available back to 1700 of 74 indicators (includ-
ing only two instrumental or historical indicators) skilfully resolves
five eigenvectors (nos 1, 2, 5, 11, 15) and shows some significant
signs of decrease in reconstructive skill. In this case, ,60–70% of
NH variance is resolved in calibration and verification, ,14–18%
of MULT in calibration, and 10–12% of MULT in verification. The
verification r of NINO3 with the SOI is in the range of r < 2 0:25 to
−0.35, which is statistically significant (as is the correspondence
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with the historical35 chronology back to 1700) but notably inferior
to the later calibrations. In short, both spatial patterns and large-
scale means are skilfully resolved, but with significantly less resolved
variance than in later calibrations.

(4) The network of 57 indicators back to 1600 (including one
historical record) skilfully resolves four eigenvectors (nos 1, 2, 11,
15). 67% of NH is resolved in calibration, and 53% in verification.
14% of MULT is resolved in calibration, and 12% of MULT in
verification. A significant, but modest, level of ENSO-scale varia-
bility is resolved in the calibrations.

(5) The network of 24 proxy indicators back to 1450 resolves two
eigenvectors (nos 1, 2) and ,40–50% of NH in calibration and
verification. Only ,10% of MULT is resolved in calibration and

,5% in verification. There is no skilful reconstruction of ENSO-
scale variability. Thus spatial reconstructions are of marginal
usefulness this far back, though the largest-scale quantities are
still skilfully resolved.

(6) The multiproxy network of 22 indicators available back to
1400 resolves only the first eigenvector, associated with 40–50% of
resolved variance in NH in calibration and verification. There is no
useful resolution of spatial patterns of variability this far back. The
sparser networks available before 1400 show little evidence of skill in
reconstructing even the first eigenvector, terminating useful recon-
struction at the initial year AD 1400.

(7) Experiments using trainee networks containing only proxy
(that is, no instrumental or historical) indicators establish the most
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Figure 3 Spatial patterns of reconstruction statistics. Top, calibration b (based

on 1902–80 data); middle, verification (based on 1854–1901 data) b; bottom,

verification r2 (also based on 1854–1901 data). For the b statistic, values that are

insignificant at the 99% level are shown in grey negative; but 99% significant

values are shown in yellow, and significant positive values are shown in two

shades of red. For the r2 statistic, statistically insignificant values (or any grid-

points with unphysical valuesof correlation r , 0) are indicated in grey. The colour

scale indicates values significant at the 90% (yellow), 99% (light red) and 99.9%

(dark red) levels (these significance levels are slightly higher for the calibration

statistics which are based on a longer period of time). A description of significance

level estimation is provided in the Methods section.

Figure 4 Comparison of the proxy-based spatial reconstructions of the anomaly

pattern for 1941 versus the raw data. Comparisons based on actual (top), EOF-

filtered (middle), and proxy-reconstructed (bottom) data. Anomalies (relative to

1902–80 climatology) are indicated by the colour scale shown in 8C.
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truly independent cross-validation of the reconstruction as there is
in this case neither spatial nor temporal dependence between the
calibration and verification data sets. Such statistically significant
verification is demonstrated at the grid-point level (calibration and
verification resolved variance ,15% for the MULT statistic), at the
largest scales (calibration and verification resolved variance ,60–
65% for NH) and the NINO3-scale (90–95% statistical significance
for all verification diagnostics). In contrast, networks containing
only the 24 long historical or instrumental records available back
to 1820 resolve only ,30% of NH in calibration or verification, and
the modest multivariate calibration and verification resolved
variance scores of MULT (,10%) are artificially inflated by the
high degree of spatial correlation between the instrumental ‘multi-
proxy’ predictor and instrumental predictand data. No evidence of
skilful ENSO-scale reconstruction is evident in these latter recon-
structions. In short, the inclusion of the proxy data in the ‘multi-
proxy’ network is essential for the most skilful reconstructions. But
certain sub-components of the proxy dataset (for example, the
dendroclimatic indicators) appear to be especially important in
resolving the large-scale temperature patterns, with notable
decreases in the scores reported for the proxy data set if all
dendroclimatic indicators are withheld from the multiproxy net-
work. On the other hand, the long-term trend in NH is relatively
robust to the inclusion of dendroclimatic indicators in the network,
suggesting that potential tree growth trend biases are not influential
in the multiproxy climate reconstructions. The network of all
combined proxy and long instrumental/historical indicators pro-
vide the greatest cross-validated estimates of skilful reconstruction,
and are used in obtaining the reconstructions described below.

Temperature reconstructions
The reconstructions discussed here are derived using all indicators
available, and using the optimal eigenvector subsets determined in
the calibration experiments described above (11 from 1780–1980, 9
from 1760–1779, 8 from 1750–1759, 5 from 1700–1749, 4 from
1600–1699, 2 from 1450–1599, 1 from 1400–1449). To better
illustrate the workings and effectiveness of the proxy pattern
reconstruction procedure, we show as an example (Fig. 4) the
actual, the EOF-filtered, and the reconstructed temperature pat-

terns for a year (1941) during the calibration interval. This year was
a known ENSO year, associated with a warm eastern tropical Pacific
and a cold central North Pacific. Pronounced cold anomalies were
also found over large parts of Eurasia. The proxy-reconstructed
pattern captures these features, although in a relatively smoothed
sense (describing ,30% of the full variance in that pattern), and is
remarkably similar to the raw data once it has been filtered by
retaining only the 11 eigenvectors (nos 1–5, 7, 9, 11, 14–16) used in
pattern reconstruction. It is thus visually apparent that the multi-
proxy network is quite capable of resolving much of the structure
resolved by the eigenvectors retained in the calibration process.

We consider the temporal variations in the first five RPCs (Fig.
5a). The positive trend in RPC no. 1 during the twentieth century is
clearly exceptional in the context of the long-term variability in the
associated eigenvector, and indeed describes much of the unprece-
dented warming trend evident in the NH reconstruction. The
negative trend in RPC no. 2 during the past century is also
anomalous in the context of the longer-term evolution of the
associated eigenvector. The recent negative trend is associated
with a pattern of cooling in the eastern tropical Pacific (super-
imposed on warming associated with the pattern of eigenvector
no. 1) which may be a modulating negative feedback on global
warming26. RPC no. 5 shows notable multidecadal variability
throughout both the modern and pre-calibration interval, asso-
ciated with the wavelike trend of warming and subsequent cooling
of the North Atlantic this century discussed earlier29–33 and the
longer-term multidecadal oscillations in this region detected in a
previous analysis of proxy climate networks5. This variability may be
associated with ocean–atmosphere processes related to the North
Atlantic thermohaline circulation4,34.

The long-term trends in the reconstructed annual mean NH
series (Fig. 5b) are quite similar to those of decadal Northern
Hemisphere summer temperature reconstructions6, showing pro-
nounced cold periods during the mid-seventeenth and nineteenth
centuries, and somewhat warmer intervals during the mid-sixteenth
and late eighteenth centuries, with almost all years before the
twentieth century well below the twentieth-century climatological
mean. Taking into account the uncertainties in our NH recon-
struction (see Methods), it appears that the years 1990, 1995 and
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Figure 5 Time reconstructions (solid lines) along with raw data (dashed lines).

a, For principal components (RPCs) 1–5; b, for Northern Hemisphere mean

temperature (NH) in 8C. In both cases, the zero line corresponds to the 1902–80

calibration mean of the quantity. For b raw data are shown up to 1995 and positive

and negative 2j uncertainty limits are shown by the light dotted lines surrounding

the solid reconstruction, calculated as described in the Methods section.
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now 1997 (this value recently calculated and not shown) each show
anomalies that are greater than any other year back to 1400 at 3
standard errors, or roughly a 99.7% level of certainty. We note that
hemispheric mean values are not associated with globally or
hemispherically uniform trends. An example of the global pattern
for an historically documented35 ‘‘very strong’’ El Niño year (1791)
is shown in Fig. 6 top panel, demonstrating the classic warm eastern
tropical Pacific and cold central North Pacific sea surface tempera-
ture patterns. Analysis of ENSO variability in these reconstructions
is discussed in more detail elsewhere36. We also show the recon-
structed pattern for 1816 (Fig. 6 bottom panel). Quite anomalous
cold is evident throughout much of the Northern Hemisphere (even
relative to this generally cold decade) but with a quadrupole pattern
of warmth near Newfoundland and the Near East, and enhanced
cold in the eastern United States and Europe consistent with the
anomalous atmospheric circulation associated with the NAO
pattern. Such a pattern is indeed observed in empirical37 and
model-based studies38 of the atmospheric response to volcanic
forcing. We infer in the 1816 temperature pattern a climatic
response to the explosive Tambora eruption of April 1815 based
on both the anomalous hemispheric coolness and the superimposed
NAO-like pattern. Reconstructed time series RPCs nos 1–5, the NH
series, the NINO3 index and reconstructions for specific grid-points

can be obtained through the NOAA palaeoclimatology Web site
(http://www.ngdc.noaa.gov/paleo/paleo.html).

Attribution of climate forcings
We take an empirical approach to detecting the possible effects of
external forcings on the climate. The reconstructed NH series is
taken as a diagnostic of the global climate, and we examine its
relationship with three candidate external forcings during the
period 1610–1995 including (1) CO2 measurements39 as a proxy
for total greenhouse-gas changes, (2) reconstructed solar irradiance
variations2 and (3) the weighted historical ‘dust veil index’ (DVI) of
explosive volcanism (see Fig. 31.1 in ref. 40) updated with recent
data41. While we warn that historical series for these forcing agents
are imperfectly known or measured, they do nonetheless represent
our best estimates of the time-histories of the corresponding
forcings. More detailed discussions of the estimation of, and
potential sources of uncertainty or bias in, these series are
available2,39,40. Industrial-aerosol forcing of the climate has also
been suggested as an important forcing of recent climate42,43, but
its physical basis is still controversial44, and difficult to estimate
observationally. Noting that in any case, this forcing is not believed
to be important before about 1940, its omission should be incon-
sequential in our long-term detection approach. Our empirical
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Figure 6 Reconstructed annual temperature patterns for two example years. Top,

1791; bottom,1816. The colours indicate regions which exceeded (either positively

or negatively) the threshold indicated in 8C. The zero baseline is defined by the

1902–80 climatological mean for each grid-point.

Figure 7 Relationships of Northern Hemisphere mean (NH) temperature with

three candidate forcings between 1610 and 1995. Panels, (top to bottom) as

follows. ‘NH’, reconstructed NH temperature series from 1610–1980, updated with

instrumental data from 1981–95. ‘Solar’, reconstructed solar irradiance. ‘log CO2’,

greenhouse gases represented by atmospheric CO2 measurements. ‘DVI’,

weighted volcanic dust veil index. Bottom panel, evolving multivariate correlation

of NH series with the three forcings NH, Solar, log CO2. The time axis denotes the

centre of a 200-year moving window. One-sided (positive) 90%, 95%, 99%

significance levels (see text) for correlations with CO2 and solar irradiance are

shown by horizontal dashed lines, while the one-sided (negative) 90%

significance threshold for correlations with the DVI series is shown by the

horizontal dotted line. The grey bars indicate two difference 200-year windows of

data, with the long-dashed vertical lines indicating the centre of the correspond-

ing window.
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signal detection is complementary to that of model-based ‘‘finger-
print’’ signal detection studies42,43,45; while our empirical approach
relies on the faithfulness of the reconstructed forcing series and on
the assumption of a linear and contemporaneous response to
forcings, it does not suffer the potential weaknesses of incomplete
representations of internal feedback processes26, poorly constrained
parametrizations of climatic responses44, and underestimated
natural variability1 in model-based studies. To the extent that the
response to forcing is not contemporaneous, but rather is delayed
owing to the inertia of the slow-response components of the climate
system (for example, the ocean and cryosphere), our detection
approach will tend to underestimate the response to forcings,
making the approach a relatively conservative one.

We estimate the response of the climate to the three forcings
based on an evolving multivariate regression method (Fig. 7). This
time-dependent correlation approach generalizes on previous stu-
dies of (fixed) correlations between long-term Northern Hemi-
sphere temperature records and possible forcing agents2,3.
Normalized regression (that is, correlation) coefficients r are simul-
taneously estimated between each of the three forcing series and the
NH series from 1610 to 1995 in a 200-year moving window. The first
calculated value centred at 1710 is based on data from 1610 to 1809,
and the last value, centred at 1895, is based on data from 1796 to
1995—that is, the most recent 200 years. A window width of 200 yr
was chosen to ensure that any given window contains enough
samples to provide good signal-to-noise ratios in correlation
estimates. Nonetheless, all of the important conclusions drawn
below are robust to choosing other reasonable (for example, 100-
year) window widths.

We test the significance of the correlation coefficients (r) relative
to a null hypothesis of random correlation arising from natural
climate variability, taking into account the reduced degrees of
freedom in the correlations owing to substantial trends and low-
frequency variability in the NH series. The reduced degrees of
freedom are modelled in terms of first-order markovian ‘red
noise’ correlation structure of the data series, described by the
lag-one autocorrelation coefficient r during a 200-year window.
This parameter ranges from 0.48 in the first window (1610–1809) to
0.77 in the final window (1796–1995) of the moving correlation, the
considerably larger recent value associated with the substantial
global warming trend of the past century. This latter trend has
been shown to be inconsistent with red noise46 and could thus itself
be argued as indicative of externally forced variability. An argument
could in this sense, be made for using the smaller pre-industrial
value r ¼ 0:48 of the NH series in estimating the statistical degrees
of freedom appropriate for the null hypothesis of natural variability.
Nonetheless, we make the conservative choice of adopting the
largest value r ¼ 0:77 as representative of the natural serial correla-
tion in the series. We use Monte Carlo simulations to estimate the
likelihood of chance spurious correlations of such serially correlated
noise with each of the three actual forcing series. The associated
confidence limits are approximately constant between sliding 200-
year windows. For (positive) correlations with both CO2 and solar
irradiance, the confidence levels are both approximately 0.24 (90%),
0.31 (95%), 0.41 (99%), while for the ‘whiter’, relatively trendless,
DVI index, the confidence levels for (negative) correlations are
somewhat lower (−0.16, −0.20, −0.27 respectively). A one-sided
significance test is used in each case because the physical nature of
the forcing dictates a unique expected sign to the correlations
(positive for CO2 and solar irradiance variations, negative for the
DVI fluctuations).

The correlation statistics indicate highly significant detection of
solar irradiance forcing in the NH series during the ‘Maunder
Minimum’ of solar activity from the mid-seventeenth to early
eighteenth century which corresponds to an especially cold
period. In turn, the steady increase in solar irradiance from the
early nineteenth century through to the mid-twentieth century

coincides with the general warming over the period, showing
peak correlation during the mid-nineteenth century. The regression
against solar irradiance indicates a sensitivity to changes in the ‘solar
constant’ of ,0.1 K W−1 m−2, which is consistent with recent model-
based studies42. Greenhouse forcing, on the other hand, shows no
sign of significance until a large positive correlation sharply emerges
as the moving window slides into the twentieth century. The partial
correlation with CO2 indeed dominates over that of solar irradiance
for the most recent 200-year interval, as increases in temperature
and CO2 simultaneously accelerate through to the end of 1995,
while solar irradiance levels off after the mid-twentieth century. It is
reasonable to infer that greenhouse-gas forcing is now the dominant
external forcing of the climate system. Explosive volcanism exhibits
the expected marginally significant negative correlation with tem-
perature during much of 1610–1995 period, most pronounced in
the 200-year window centred near 1830 which includes the most
explosive volcanic events.

A variety of general circulation42,47 and energy-balance model
experiments43,45,48 as well as statistical comparisons of twentieth-
century global temperatures with forcing series49 suggest that,
although both solar and greenhouse-gas forcings play some role
in explaining twentieth-century climate trends, greenhouse gases
appear to play an increasingly dominant role during this century.
Such a proposition is consistent with the results of this study.

As larger numbers of high-quality proxy reconstructions become
available in diverse regions of the globe, it may be possible to
assimilate a more globally representative multiproxy data network.
Given the high level of skill possible in large-scale reconstruction
back to 1400 with the present network, it is reasonable to hope that
it may soon be possible to faithfully reconstruct mean global
temperatures back over the entire millennium, resolving for exam-
ple the enigmatic7 medieval period. Geothermal measurements
from boreholes50 recover long-term temperature trends without
many of the complications of traditional proxy indicators and, in
combination with traditional multiproxy networks, may prove
helpful in better resolving trends over many centuries. With a
better knowledge of how the climate has varied before the twentieth
century, we will be able to place even better constraints on the
importance of natural and anthropogenic factors governing the
climate of the past few centuries, factors which will no doubt
continue to affect climate variability in the future, in addition to
any anthropogenic effects. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Statistics. We use as our primary diagnostic of calibration and verification
reconstructive skill the conventional ‘resolved variance’ statistic;

b ¼ 1 2 ^ðyref 2 ŷÞ2 ^y2
ref

,

where yref is the reference series (the raw data in the case of calibration or the
verification dataset in the case of verification) and ŷ is the series being
compared to it (the proxy-reconstructed data for either calibration or
verification). We compute b for each grid-point, and for the NH, GLB and
MULT quantities. The sum extends over the time interval of comparison, and
for the multivariate case (MULT), over all gridpoints as well. We also computed
a calibration b statistic for the detrended NH series (DETR) to distinguish
between explanatory variance associated with the notable trend of the twentieth
century, and that related to departures from the trend.

b is a quite rigorous measure of the similarity between two variables,
measuring their correspondence not only in terms of the relative departures
from mean values (as does the correlation coefficient r) but also in terms of the
means and absolute variance of the two series. For comparison, correlation (r)
and squared-correlation (r2) statistics are also determined. The expectation
value for two random series is b ¼ 2 1. Negative values of b may in fact be
statistically significant for sufficient temporal degrees of freedom. Nonetheless,
the threshold b ¼ 0 defines the simple ‘climatological’ model in which a series
is assigned its long-term mean. In this sense, statistically significant negative
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values of b might still be considered questionable in their predictive or
reconstructive skill. Owing to the more rigorous ‘match’ between two series
sought by b, highly significant values of b are possible even when r2 is only
marginally significant.

Significance levels were determined for r2 from standard one-sided tables,
accounting for decreased degrees of freedom owing to serial correlation.
Significance levels for b were estimated by Monte Carlo simulations, also taking
serial correlation into account. Serial correlation is assumed to follow from the
null model of AR(1) red noise, and degrees of freedom are estimated based on
the lag-one autocorrelation coefficients (r) for the two series being compared.
Although the values of r differ from grid-point to grid-point, this variation is
relatively small, making it simplest to use the ensemble average values of r over
the domain (r < 0:2).
Calibration. With the spatial sampling of M ¼ 1,082 continuous monthly
grid-point surface temperature anomaly (that is, de-seasonalized) data used
(Fig. 1b), the N ¼ 1,128 months of data available from 1902 to 1995 were
sufficient for a unique, overdetermined eigenvector decomposition (note that
N9 ¼ 94 years of the annual mean data would, in contrast, not be sufficient).

For each grid-point, the mean was removed, and the series was normalized
by its standard deviation. A standardized data matrix Tof the data is formed by
weighting each grid-point by the cosine of its central latitude to ensure areally
proportional contributed variance, and a conventional Principal Component
Analysis (PCA) is performed,

T ¼ ^
K

k¼1

lku†
k vk

decomposing the dataset into its dominant spatiotemporal eigenvectors. The
M-vector or empirical orthogonal function (EOF) vk describes the relative
spatial pattern of the kth eigenvector, the N-vector uk or principal component
(PC) describes its variation over time, and the scalar lk describes the associated
fraction of resolved (standardized and weighted) data variance.

In a given calibration exercise, we retain a specified subset of the annually
averaged eigenvectors, the annually averaged PCs denoted by ūk

n, where
n ¼ 1;…; N̄ , N̄ ¼ 79 is the number of annual averages used of the N-month
length data set. In practice, only a small subset Neofs of the highest-rank
eigenvectors turn out to be useful in these exercises from the standpoint of
verifiable reconstructive skill. An objective criterion was used to determine the
particular set of eigenvectors which should be used in the calibration as follows.
Preisendorfer’s25 selection rule ‘rule N’ was applied to the multiproxy network
to determine the approximate number Neofs of significant independent climate
patterns that are resolved by the network, taking into account the spatial
correlation within the multiproxy data set. Because the ordering of various
eigenvectors in terms of their prominence in the instrumental data, and their
prominence as represented by the multiproxy network, need not be the same,
we allowed for the selection of non-contiguous sequences of the instrumental
eigenvectors. We chose the optimal group of Neofs eigenvectors, from among a
larger set (for example, the first 16) of the highest-rank eigenvectors, as the
group of eigenvectors which maximized the calibration explained variance. It
was encouraging from a consistency standpoint that this subset typically
corresponded quite closely to the subset which maximized the verification
explained variance statistics (see below), but the objective criterion was, as it
should be, independent of the verification process. We emphasize, furthermore,
that statistical significance was robustly established, as neither the measures of
statistical skill nor the reconstructions themselves were highly sensitive to the
precise criterion for selection. Inaddition to the abovemeansof cross-validation,
we also tested the network for sensitivity to the inclusion or elimination of
particular trainee data (for example, instrumental/historical records, non-
instrumental/historical records, or dendroclimatic proxy indicators).

These Neofs eigenvectors were trained against the Nproxy indicators, by finding
the least-squares optimal combination of the Neofs PCs represented by each
individual proxy indicator during the N̄ ¼ 79 year training interval from 1902
to 1980 (the training interval is terminated at 1980 because many of the proxy
series terminate at or shortly after 1980). The proxy series and PCs were formed
into anomalies relative to the same 1902–80 reference period mean, and the
proxy series were also normalized by their standard deviations during that
period. This proxy-by-proxy calibration is well posed (that is, a unique optimal
solution exists) as long as N̄ . Neofs (a limit never approached in this study)

and can be expressed as the least-squares solution to the overdetermined matrix
equation, Ux ¼ yðpÞ, where

U ¼

ūð1Þ
1 ūð2Þ

1 … uðNeofs Þ
1

ūð1Þ
2 ūð2Þ

2 … uðNeofs Þ
2

W
ūð1Þ

Ñ ūð2Þ

Ñ … uðNeofs Þ

Ñ

2

6
6
6
4

3

7
7
7
5

is the matrix of annual PCs, and

yðpÞ ¼

yðpÞ

yðpÞ1
2

W
yðpÞ

N̄

2

6
6
6
4

3

7
7
7
5

is the time series Ñ-vector for proxy record p.
The Neofs-length solution vector x ¼ GðpÞ is obtained by solving the above

overdetermined optimization problem by singular value decomposition for
each proxy record p ¼ 1;…; P. This yields a matrix of coefficients relating the
different proxies to their closest linear combination of the Neofs PCs;

G ¼

Gð1Þ
1 Gð1Þ

2 … Gð1Þ
Neofs

Gð2Þ
1 Gð2Þ

2 … Gð2Þ
Neofs

W
GðPÞ

1 GðPÞ
2 … GðPÞ

Neofs

2

6
6
6
4

3

7
7
7
5

This set of coefficients will not provide a single consistent solution, but rather
represents an overdetermined relationship between the optimal weights on
each on the Neofs PCs and the multiproxy network.

Proxy-reconstructed patterns are thus obtained during the pre-calibration
interval by the year-by-year solution of the overdetermined matrix equation,
Gz ¼ yð jÞ, where y( j) is the predictor vector of values of each of the P proxy
indicators during year j. The predictand solution vector z ¼ Û contains the
least-squares optimal values of each of the Neofs PCs for a given year. This
optimization is overdetermined (and thus well constrained) as long as
P . Neofs which is always realized in this study. It is noteworthy that, unlike
conventional palaeoclimate transfer function approaches, there is no specific
relationship between a given proxy indicator and a given predictand (that is,
reconstructed PC). Instead, the best common choice of values for the small
number of Neofs predictands is determined from the mutual information
present in the multiproxy network during any given year. The reconstruction
approach is thus relatively resistant to errors or biases specific to any small
number of indicators during a given year.

This yearly reconstruction process leads to annual sequences of the optimal
reconstructions of the retained PCs, which we term the reconstructed principal
components or RPCs and denote by ûk. Once the RPCs are determined, the
associated temperature patterns are readily obtained through the appropriate
eigenvector expansion,

T̂ ¼ ^
Neofs

k¼1

lkû†
kvk

while quantities of interest (for example, NH) are calculated from the
appropriate spatial averages, and appropriate calibration and verification
resolved variance statistics are calculated from the raw and reconstructed data.

Several checks were performed to ensure a reasonably unbiased calibration
procedure. The histograms of calibration residuals were examined for possible
heteroscedasticity, but were found to pass a x2 test for gaussian characteristics at
reasonably high levels of significance (NH, 95% level; NINO3, 99% level). The
spectra of the calibration residuals for these quantities were, furthermore,
found to be approximately ‘white’, showing little evidence for preferred or
deficiently resolved timescales in the calibration process. Having established
reasonably unbiased calibration residuals, we were able to calculate
uncertainties in the reconstructions by assuming that the unresolved variance
is gaussian distributed over time. This variance increases back in time (the
increasingly sparse multiproxy network calibrates smaller fractions of
variance), yielding error bars which expand back in time.
Verification. Verification resolved variance statistics (b) were determined
based on two distinct verification data sets including (1) the sparse subset of the
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gridded data (M9 ¼ 219 grid-points) for which independent values are avail-
able from 1854 to 1901 (see Fig. 1b) and (2) the small subset of 11 very long
instrumental estimated temperature grid-point averages (10 in Eurasia, 1 in
North America—see Fig. 1a) constructed from the longest available station
measurements. Each of these ‘grid-point’ series shared at least 70% of their
variance with the corresponding temperature grid-point available from 1854–
1980, providing verification back to at least 1820 in all cases (and back through
the mid and early eighteenth century in many cases). Note that this latter
verification data set is only temporally, but not spatially, independent of the
multiproxy network itself, which contains these long instrumental grid-point
series as a small subset of the network. In case (1), NH and GLB verification
statistics are computed as well as the multivariate (MULT) grid-point level
verification statistic, although these quantities represent different spatial
samplings from those in the full calibration data set owing to the sparser
sampling of the verification period. Case (2) provides a longer-term, albeit an
even less spatially representative, multivariate verification statistic (MULTb). In
this case, the spatial sampling does not permit meaningful estimates of NH or
GLB mean quantities. In any of these diagnostics, a positive value of b is
statistically significant at .99% confidence as established from Monte Carlo
simulations. Verification skills for the NINO3 reconstructions are estimated by
other means, as the actual NINO3 index is not available far beyond the
beginning of the calibration period. The (negative) correlation r of NINO3
with the SOI annual-mean from 1865 to 1901 (P. D. Jones, personal com-
munication), and a squared congruence statistic g2 measuring the categorical
match between the distribution of warm NINO3 events and the distribution of
warm episodes according to the historical35 chronology (available back to the
beginning of 1525), were used for statistical cross-validation based on one-
sided tables and Monte Carlo simulations, respectively. The results of all
calibration and verification experiments are available; see Supplementary
Information.
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