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combined. This is the Stommel model of the wind-driven circulation
(Stommel, 1948). Analogous analytic models incorporating the effects of
lateral friction and weak nonlinearity have been examined by Munk (1950)
and Charney (1955a). The earliest numerical extensions of this work were
due to Bryan (1963).

11.4.2 Box models of the thermohaline circulation

The simple models for the wind-driven circulation described in
the previous section assume that buoyancy variations play little or only a
passive role in the dynamics. Despite this drastic assumption, they are quite
successful in representing the basic patterns of the circulation and provide
the underpinning of much of the theory of the ocean general circulation. For
climate applications, however, it is the spatial and temporal variations of
the temperature and salinity distributions of the ocean and its capacity for
heat storage and transport that are of primary concern. The determination
of the thermohaline (joint effects of heat and salt on buoyancy) driven
circulation and the reciprocal effects of the circulation on the distribution
of water mass properties are difficult problems for several reasons. First
and foremost is the essential nonlinearity of the system. The models of the
previous section could be obtained through a systematic scale analysis and
linearization of the governing equations. In considering the thermohaline
circulation, the advection of heat and salt by the circulation is central to
the problem and cannot be neglected. A further complication arises from
the difference between the form of the surface forcing for temperature and
salinity, as discussed in Sec. 11.2.3. As a result of the different mathematical
structure of the boundary conditions on heat and salt (often referred to in
the literature as mixed boundary conditions) the problem cannot be reduced
to one in a single buoyancy variable. Additional complications in modeling
the thermohaline circulation arise from the nonlinear equation of state for
sea water and the presence of double-diffusive phenomena.

An alternative to the formal mathematical derivation of simplified models
from the full equations of motion is to pose a conceptual model or
simple physical analog for the system or processes being considered. This
approach has been fruitfully exploited in developing our understanding of the
dynamics of the thermohaline circulation. The consequences of the difference
in the nature of the feedbacks between surface temperature and salinity and
their respective surface forcings were first explored by Stommel (1961) using
a very simple model consisting of two well-mixed reservoirs connected by
pipes. In particular, he showed that the thermohaline circulation may have
multiple equilibria for a given surface forcing distribution.

These ideas are illustrated using a slightly modified version of the model
(Fig. 11.2), as described by Marotzke (1989). The two reservoirs are taken to
represent equatorial and polar regions of the ocean. In light of the discussion

388



D. B. Haidvogel and F. O. Bryan: Ocean circulation modeling

F -F
q—
To, So Ti, S
«—q

iz. 11.2 Schematic of the two-box model of the thermohaline circulation. Box 1 represents
high-latitude conditions, box 2 represents low-latitude conditions.

»f surface boundary conditions above, it is assumed that the temperatures
remain very close to the imposed atmospheric values T; and Ts (T1 < T3)
and are simply held fixed. Salinity, on the other hand, is forced by a flux
»f moisture F' through the atmosphere from the low-latitude to the high-
latitude box. The sense of the salinity forcing is to make the low-latitude box
saltier and more dense and the high-latitude box fresher and less dense. The
resulting torque thus opposes that of the imposed temperature differences.
Conservation of salt in the boxes is given by:

ds

Vd—tl = —F5So+|q|(S2 — S1) (11.33)
ds

V—d_t2 = FSo + |q|(S1 — S2) , (11.34)

where V is the volume of the boxes (assumed equal), Sp is a (constant)
reference salinity, and ¢ is the rate of volume exchange in the pipes. The
absolute value in the advective term arises because the same exchange is
affected irrespective of the direction of the flow. The flow is driven by the
pressure difference between the boxes (linearly proportional to the density
difference) and retarded by friction in the pipes, and is assumed to be
in instantaneous balance. This simplified dynamics is modeled using a
resistivity k~! to obtain:

k
g=——(p2—p1) . (11.35)
Po
The system is closed with a linear equation of state:
p = po(l —aT + BS) (11.36)

where « is the thermal expansion coefficient and 3 is the haline contraction
coefficient.

From (11.33) and (11.34) the total salt content of the system is conserved,
and from (11.35) only the difference between the temperature and salinity
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of the two boxes enters the dynamics. A transformation is made to the
following nondimensional variables

B(S2 — S1) .
C!(TQ —Tl) (

= q ag

r= ———_ka(Tz = Tl) (113,

§ - OFG (11.39

kVa2(T, — T1)?

Time is also nondimensionalized by —2—@%}—) The quantity 6 represents

the relative contributions of salinity and temperature to the buoyancy
difference between the boxes, r represents the strength of the flow relative
to the purely thermally driven system, and E represents the strength of the
salinity forcing relative to advection. Subtracting (11.33) from (11.34) and
substituting (11.37-11.39) gives

6=FE—|r|6, (11.40
and (11.35) becomes
r=1-6. (11.41)
The three steady state solutions of (11.40-11.41) are given by

1
61 = 5(1~V1-1E) (11.42a)
by = %(1+\/1—4E) (11.42b)
1
63 = 5(1+ V1+4E) (11.42¢)

and are shown in Fig. 11.3. The system can support multiple equilibria for
b= %; there are three solutions for a given value of E. The solution 6> can
be shown to be unstable and hence not realizable in the real climate or a
numerical model.

Solution &; represented by the solid portion of the curve in Fig. 11.3, has
0 < 6 < 0.5; i.e., the contribution of temperature to the buoyancy difference
dominates that of salinity. The flow is relatively strong (0.5 < r < 1) with
“sinking” in the cold box, deep flow to low latitudes, “upwelling” in the
warm box, and surface flow back to high latitudes. This corresponds to the
configuration of the thermohaline circulation of the North Atlantic under
present climate conditions.

Solution &3 , represented by the dash-dot portion of the curve in Fig. 11.3,
has § > 1; i.e., the contribution of salinity to the buoyancy difference
dominates over that of temperature. In this regime, the flow is reversed from
the previous case (r < 0) with “sinking” in the warm box, deep flow from
low to high latitudes, “upwelling” in the cold box, and surface flow from high
back to low latitudes. There is evidence that such a circulation with warm
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iz 11.3 Solution to the two-box model. The solid portion of the curve corresponds to
Eq. (11.42a), the dashed portion to (11.42b), and the dash-dot portion to (11.42¢).

salty deep water may have existed in the geologic past. In the forcing regime,
where multiple equilibria are supported, the salinity dominated “inverse”
~reulation is weaker than the thermally dominated solution. This can be
understood physically in terms of the relationship between residence time
¢ water parcels in the boxes and the effect of the flux boundary condition
on salinity. The longer a parcel remains in one box or the other, the more
“== salinity will be changed by the constant input or removal of fresh water
th *uuch the surface. The slower circulation thus allows the salinity difference
> build up and eventually dominate over temperature.

\\'elander (1986) has extended this system by adding a third box
representing a second polar region. He shows that the number of stable
=quilibria increases to four, corresponding to combinations of the solutions
¢ two independent two-box models: a symmetric solution with sinking in
the polar boxes and upwelling in the equatorial box, a symmetric solution
with sinking in the equatorial box and upwelling in the polar boxes, and two
ssymmetric solutions with sinking in one of the polar boxes and upwelling
«n the other polar box. The existence of multiple equilibria has also been
“ound in more complex ocean models and coupled ocean—atmosphere models
as described further in the following sections and in Chapter 17.

11.4.3 Two-dimensional meridional plane models

Box models provide a means of exploring basic physical processes
active in the thermohaline circulation, and have been particularly useful
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