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Abstract

The detection of anthropogenic climate change in observations and the validation of climate models both rely on

understanding natural climate variability. To evaluate internal climate variability, we apply spectral analysis to time series of

surface air temperature (SAT) from nine coupled general circulation model (GCM) simulations, three recent global

paleotemperature reconstructions, and Northern Hemisphere (NH) instrumental records. Our comparison is focused on the NH

due to the greater spatial and temporal coverage and validation of the available NH temperature reconstructions. The

paleotemperature reconstructions capture the general magnitude of NH climate variability, but not the precise variance and

specific spatial, temporal, or periodic signals demonstrated in the instrumental record. The models achieved varying degrees of

success for each measure of variability analyzed, with none of the models consistently capturing the appropriate variability. In

general, the models performed best in the analysis of combined mean annual land and marine variability.
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1. Introduction

Considerable effort has been made in recent years

to compare general circulation model (GCM) results

to instrumental observations and paleotemperature

reconstructions (e.g., Barnett et al., 1996; Jones et

al., 1998; Bell et al., 2000; etc.). The purposes of these

studies have been to: (1) evaluate the performance of

climate models, or (2) to determine whether or not

humans have had a discernable influence on climate in

the 20th century (Santer et al., 1995; Barnett et al.,

2001; Levitus et al., 2001). The first goal is met by

assessing whether or not the models capture signifi-

cant features of the instrumental and proxy time series

of temperature and by comparing the variability in the

temperature records to the internal climate variability

of the models.

Assessing how well a particular model simulates

natural climate variability relies on comparison with

instrumental and proxy records. Such comparisons are

problematic for several reasons. Inherent in any
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instrumental record is the possible anthropogenic

influence on climate, which cannot be easily removed

from the record. Also, instrumental data are practi-

cally nonexistent in some areas and spatial coverage

decreases earlier in the record (Fig. 1). For example,

high-latitude regions have very little instrumental

coverage. Furthermore, instrumental records are

limited to typically the last 150 years, rendering any

longer-term variability analysis impossible. Proxy

temperature data have the advantage of spanning

much longer time periods, often several centuries.

As a disadvantage, proxies of past temperatures are

also limited in spatial extent and are not direct

measurements of temperature, but are instead meas-

urements of phenomena such as tree ring growth,

variations in sediment layer thickness, or geochemical

(typically d18O) changes that can be shown to vary as

a function of climate. That these proxies all have

systems that ‘‘filter’’ the original temperature signal

introduces inherent uncertainties into the resulting

temperature interpretations. Furthermore, determining

low-frequency variability from proxy records can be

difficult due to changes in the recorded climate signal

with increasing length of the proxy record. For exam-

ple, tree rings have age-related growth trends, and ice

layers thin with depth. These trends must be removed

from the proxy record and, in doing so, low-frequency

climate data is inevitably removed as well. Despite

these uncertainties, the length of the available proxy

records can allow for more robust low-frequency

natural variability estimates than is possible using

instrumental data.

2. Proxy temperature data

Recent paleoclimate reconstructions typically

include several different types of proxy indicators

such as tree ring widths and/or densities, d18O meas-

urements from ice cores or corals, and varved sedi-

ment thicknesses. Individual proxy temperature

indicators represent particular temporal distributions

and representative regions. Each proxy is calibrated

(typically to observational data for an overlapping

Fig. 1. Percent area of NH instrumental temperature records with respect to time (Jones, 1994; Parker et al., 1995; Jones et al., 1999).
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period of time), and then combined with other proxies

to create a composite time series. The proxy records

used in this study are composite records, which

represent greater spatial and temporal distribution than

is possible with individual site proxies. It is important

to note that many temperature reconstructions are

composed of less than 30 individual records of vary-

ing length. For a summary of the spatial limitations

and time scale dependence of common proxies, see

Jones et al. (1998).

We analyze three proxy temperature records from

Jones et al. (1998), Mann et al. (1999), and Briffa et

al. (2001) (hereafter referred to as J98, M99, and B01,

respectively). Each record has specific strengths and

weaknesses. For example, J98 is a multiproxy record

composed of a limited number of proxies (10), but all

are of greater than 350 years in duration. J98 is

composed of one NH instrumental and one historical

temperature record and eight proxy temperature

records derived from tree ring density and width, ice

core melt layers, and oxygen isotopic values. This

reconstruction was originally presented as a summer

record (June–August), but it has been rescaled to

represent NH growing season temperatures (April–

September) from AD 1000 to the present. The inclu-

sion of several different types of proxies should limit

any weaknesses or biases associated with individual

proxy types.

The B01 record consists of 387 tree ring density

chronologies representing NH growing season tem-

peratures. These tree ring chronologies span the last

600 years and are processed using the Age-Band

Decomposition (ABD) technique. ABD is a rela-

tively new and untested calibration technique de-

signed to preserve long time scale variability, but

it may not accurately represent high-frequency var-

iability (Briffa et al., 2001). The large number of

tree ring chronologies used in B01 should reduce

spatial biases and growth-related trends, but the use

of only one type of proxy makes the entire record

susceptible to any and all biases associated with tree

rings.

The M99 data is a multiproxy network of widely

distributed instrumental, historical, and proxy (tree

ring, coral and ice core d18O) records representing

NH mean annual temperatures. Prior to AD 1400, the

data are composed of 12 NH proxy indicators dating

back to AD 1000. After AD 1400, the multiproxy

network is composed of at least 22 indicators, increas-

ing to 112 indicators closer to the present. The multi-

proxy approach should limit the effects of any

weaknesses or biases of individual proxy types and

locations (Mann et al., 1998).

3. Model simulations

We examine nine coupled GCM control runs that

are intended to simulate preindustrial climate (Table

1). Each simulation employs constant external forcing

(e.g., constant preindustrial greenhouse gas concen-

trations and present-day solar constant), with no solar

variability or volcanic aerosol emissions included. We

analyze only simulations of multi-century length in

Table 1

Model properties

Model Length (years) Ocean resolution Atmosphere resolution Land surface scheme Flux correction

ECHAM1 960 (4.0� 4.0) L11 T21 (5.6� 5.6) L19 Modified bucket a, b, c

ECHAM3 1000 (4.0� 4.0) L11 T21 (5.6� 5.6) L19 Modified bucket a, b, c

ECHAM4 240 (2.8� 2.8) L11 T42 (2.8� 2.8) L19 Modified bucket a, b

GFDL 1000 (4.5� 3.7) L12 R15 (4.5� 7.5) L9 Bucket a, b

GFDL 14K 14000 (4.5� 3.7) L12 R15 (4.5� 7.5) L9 Bucket a, b

GFDL R30 500 (1.875� 2.25) L18 R30 (2.25� 3.75) L14 Bucket a, b

NCAR CSM 290 (2.0� 2.4) L45 T42 (2.8� 2.8) L18 Physical None

DOE PCM 300 (0.67� 0.67) L32 T42 (2.8� 2.8) L18 Physical None

HadCM2 1085 (2.5� 3.75) L20 (2.5� 3.75) L19 Modified bucket a, b

Properties of the GCMs analyzed in this study. Ocean and atmosphere resolutions are given as grid cell size in degrees followed by the total

number of vertical levels. The land surface schemes are described in Bell et al. (2000). The flux corrections are: a—heat, b—water or c—

momentum. References available from http://www-pcmdi.llnl.gov/cmip/Table.htm.
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order to address climate variability on interannual to

centennial time scales. For two of the models

(ECHAM3 and GFDL 14K), only annual mean results

were provided; therefore, these models are omitted

from some of our analyses.

4. Methods

4.1. Variability tests

We analyze variance, significant periodic energy

and the shape of the power spectrum for temper-

atures in each proxy and model time series. Each

analysis involves a two-step approach. First, we

compare the proxy data with instrumental temper-

ature records (Jones, 1994; Parker et al., 1995; Jones

et al., 1999; hereafter referred to as observations)

over a validation period of 1881–1980. Second, we

compare the proxy and observational data to the

model results.

The observations are in the form of a 5j latitude

by 5j longitude gridded data set. The gridded data

allows us to subject the observations to the same

space and time domain analyses as the model results.

The purpose of validating the proxy data with the

observations is to evaluate how well the proxies

capture the major features of the temperature record.

Several factors may introduce error into the valida-

tion procedure. These factors include, but are not

limited to, the incomplete spatial coverage of the

observations and proxy data, anthropogenic influen-

ces on climate and the direct effect of changing

pCO2 on tree growth (Briffa et al., 1998), different

methods and periods of proxy calibration, and natu-

ral ‘‘filtering’’ of the climate signal recorded by the

proxies. In addition, the relatively short validation

period does not capture any of the effects of long-

term climate variability that we want to assess in the

proxy vs. model comparison.

The proxy data are compared to observations and

model results on four different spatial and temporal

scales: (1) mean annual land and marine; (2) mean

annual land-only; (3) growing season land and

marine; and (4) growing season land-only (hereafter

referred to as MALM, MALO, GSLM, and GSLO,

respectively). In the case of the two annually

resolved models (ECHAM3 and GFDL 14K), only

the two mean annual time series were created, and

these models are used only for mean annual compar-

isons. As described in the Proxy Temperature Data

section, the proxy data fall into different spatial and

temporal categories. With the exception of J98,

which has been rescaled to represent growing season

temperatures, we present the proxy records as their

authors originally did with respect to what time

period and spatial distribution each record represents.

Since there may be some disagreement within the

proxy data community regarding whether these spa-

tial and temporal distributions are correct, we include

all three proxy records for equal comparison with the

model simulations in each of the four domains

above. The proxies are annually resolved and, there-

fore, are well suited for comparisons on annual to

centennial time scales.

To avoid incorporating any anthropogenic influen-

ces on climate, the proxy data were truncated at AD

1850 for comparison with the model results. All

model results, observations, and proxy data were

detrended using a quadratic least squares fit. The

quadratic detrend is more effective than the standard

linear detrend at removing nonperiodic components of

the time series, with periodicity defined as integer

fractions of the total length of the time series.

After detrending each time series, the variance was

calculated and the power spectrum was estimated

using the multi-taper method (MTM; Thomson,

1982). MTM was used instead of the more commonly

used Blackman–Tukey method (Blackman and

Tukey, 1958) because of the reduction in estimator

variance available with MTM (Thomson, 1982; Per-

cival and Walden, 1993). (For a discussion of the

advantages and disadvantages of various spectral

techniques and applications, see Ghil et al., submitted

for publication). We use spectral analysis to compare

periodic energy between different time series and to

estimate the shape of the spectrum. We are interested

in periodic elements of the proxy and observational

spectra because they are generally indicators of modes

of climate variability (e.g., El Niño/Southern Oscil-

lation (ENSO) and the North Atlantic Oscillation

(NAO)).

Time series of climatic variables often have both

memory and random processes associated with them.

For example, the statistics of detrended temperature at

discrete time intervals can be modeled as the product
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of the temperature at the previous interval and a

random perturbation. This type of process, known as

an autoregressive process, or AR(1) process, can be

represented by the following equation (Chatfield,

1996):

Xt ¼ aXt�1 þ Zt

where aXt� 1 represents the memory of the process,

and the Zt are independent, normally distributed

random variables. The a term is known as the lag

one autocorrelation coefficient; it determines the

shape of the power spectrum. For a>0, power is

concentrated at low frequencies, producing a red

spectrum; if a = 0, the spectrum is white or uncorre-

lated. Hasselmann (1976) introduced the red noise

process in terms of climate as a description of inte-

gration of short time scale forcing by a slow response

system (Griffies and Bryan, 1997), e.g., the integra-

tion of atmospheric forcing by the oceans. Additional

sources of low-frequency (long period) variance (e.g.,

the Pacific Decadal Oscillation (PDO) or the NAO;

Appenzeller et al., 1998; Black et al., 1999) will be

added to the red noise process. Thus, a time series not

exhibiting energy above the median red noise at the

zero frequency is thought to be underrepresenting the

true climatic variance (Mann and Lees, 1996; Mann et

al., 1998).

4.2. Sensitivity tests

In a study by Bell et al. (2000), model results

were compared to observations. In that study, the

authors accounted for the incomplete spatial cover-

age of the observations by removing model results,

where there was no observational data. We have not

done this in the present study. Instead, we have

performed sensitivity tests of the effects of missing

data and short record lengths on variance and on the

shape of the power spectrum. We calculated the

variance over all nonoverlapping periods of 100

years and found the mean 100-year variance (the

length of the observational record) for each model

simulation. We chose to use the HadCM2 model for

the sensitivity tests because it displayed average 100-

year variance with a relatively large sample size (10

nonoverlapping 100-year segments). The process

was repeated after masking the model results with

the missing observational data from 1881 to 1980,

resulting in average 100-year variance values from

identical time periods for the masked and unmasked

model data. We used the F-test to determine that the

masked variance is significantly greater than the

unmasked variance, implying that by not masking

the model results, in our current study, we are

making conservative comparisons of simulated and

observed variances. To test the effects of varying

spatial coverage on the shape of the power spectrum,

we calculated the mean lag one autocorrelation

coefficient (a) in a similar manner to above. The

mean lag one autocorrelation coefficient is greater

when using the masked results. This implies that the

observational a value will be artificially high, indi-

cating inflated amounts of low-frequency energy and

a more red spectrum than would be calculated if the

observational data coverage were spatially and tem-

porally complete.

5. Results

5.1. Variance

5.1.1. Validation

Detrended time series of each proxy and the

observational record for each time–space domain

(MALM, MALO, GSLM, and GSLO) are shown for

the validation period, 1881–1980 (Fig. 2). Table 2

shows the proxy variance for three separate time

periods, and Table 3 shows the variance of the models

and observations for the different time – space

domains. We use the F-test to test the null hypothesis

that two population variances are equal. If the F-test

result is < 5%, we reject the null hypothesis and

accept the alternative hypothesis that the variances

of the two populations are different. Table 2 also

shows the F-test results for the comparisons of proxy

and observational variances.

Based on the above standard, we reject the null

hypothesis in the comparisons of B01 variance (Table

2) to observational GSLM, GSLO, and MALM var-

iances (Table 3). The B01 variance is greater than the

observational GSLM, GSLO, and MALM variances,

but not significantly different from the observational

MALO variance. For J98 and M99, we accept the null

hypothesis in all comparisons with observations; the
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variances of the populations do not differ signifi-

cantly.

5.1.2. Growing season

For the NH GSLO, total variance is greatest in the

HadCM2, GFDL, and GFDL R30 models, and

smallest for the ECHAM1 model (Table 3). The

same is true when the model results are sampled

over combined land and marine domains (GSLM),

but the overall amplitude of the variance is less (Fig.

3). This is consistent with earlier findings that both

observed and modeled land-only variability is greater

Fig. 2. Time series of the proxies and observational records (MALM, MALO, GSLM, and GSLO) are shown for the validation period, 1881–

1980. Each time series has been detrended and is displayed in Fig. 3. The variances of the proxy time series appear in Table 2, and the variances

of the observed time series appear in Table 3.

Table 2

Proxy variance (jC2) and F-test results (%)

Proxy Proxy variance F-test

1000–

1850

1402–

1850

1881–

1980

GSLM

(%)

GSLO

(%)

MALM

(%)

MALO

(%)

B01 NA 0.037 0.025 0 2 0 19

J98 0.023 0.021 0.014 11 64 15 12

M99 0.012 0.011 0.014 8 73 12 15

Proxy variances for three different time intervals (1000–1850,

1402–1850, and 1881–1980) and results of the F-test are shown.

The F-test null hypothesis (equal variances) is rejected for values

< 5%. Observational variance values are in Table 3.

Table 3

Variance of models and observations (jC2)

GSLM GSLO GSLO/

GSLM

MALM MALO MALO/

MALM

Observations 0.010 0.015 1.500 0.010 0.019 1.900

ECHAM1 0.006 0.018 2.797 0.006 0.016 2.574

ECHAM3 NA NA NA 0.010 0.024 2.465

ECHAM4 0.010 0.020 2.009 0.012 0.028 2.347

GFDL 0.021 0.053 2.523 0.017 0.038 2.266

GFDL R30 0.032 0.060 1.875 0.032 0.049 1.550

GFDL 14K NA NA NA 0.017 0.037 2.228

NCAR CSM 0.017 0.033 1.903 0.026 0.039 1.514

DOE PCM 0.012 0.021 1.702 0.018 0.030 1.692

HadCM2 0.020 0.042 2.136 0.018 0.035 1.918

Variance of models and observations for all space and time domains.

Also included are the ratios of land-only to land and marine

variances.
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in magnitude than combined land and marine varia-

bility (Stouffer et al., 1994; Bell et al., 2000). Table

4 shows the F-test results of the comparisons of

model variances to variances of the observations and

the full length of each proxy. At most, the variance

of an individual model simulation compares favor-

ably (acceptance of the null hypothesis) with only

one proxy in either domain (GSLM and GSLO).

ECHAM4 and DOE PCM perform best in this

analysis, with both models comparing favorably with

both M99 and observations in the GSLM domain

and with both J98 and observations in the GSLO

domain (Table 4). In the GSLM domain, GFDL

compares favorably with J98, and GFDL R30 com-

pares favorably with B01. For the GSLO domain,

ECHAM1 compares favorably with the observed

variance, while NCAR CSM and HadCM2 both

compare favorably with B01. Based on the F-test

results, four of seven models overestimate both the

GSLM and GSLO variances relative to the observed

variances and ECHAM1 underestimates the observed

GSLM variance.

5.1.3. Mean annual

For NH mean annual temperatures (MALM and

MALO) (Fig. 4), temperature variance is more

Fig. 3. Detrended model and proxy time series for NH growing season (April –September). For clarity, the results have been offset from the true

values by the amount shown in parentheses in the legend. The upper and lower panels are the model results over land-only, and combined land

and marine domains, respectively. The middle panel shows the detrended proxy data used in the analysis of growing season temperatures. The

variances of each time series appear in Tables 3 and 4.
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similar from model to model than for the growing

season results (not shown), with the exception of

the ECHAM1 model, which has slightly reduced

variance relative to the other eight GCMs (Table 3).

Again, the amplitude of the variance is greater in

the land-only case for every model and for obser-

vations. ECHAM4 variance compares favorably

with both M99 and observed variances in the

MALM domain. Other favorable comparisons in

the MALM domain include ECHAM3 with obser-

vations, NCAR CSM with J98, and GFDL R30

with B01. In the MALO domain, only ECHAM3

variance compares favorably with both proxy (J98)

and observed variances (Table 4). Five of the nine

model variances compare favorably with B01 in the

MALO domain, but for each of the five models, the

null hypothesis is rejected when comparing the

model variances to the observations (Table 4).

Based on the F-test results, seven of nine models

overestimate the observed MALO variance, six of

nine models overestimate the observed MALM

variance, and ECHAM1 underestimates the ob-

served MALM variance.

5.2. Periodic energy

We compared peaks in the power spectra that

were above the median red noise background with

greater than 90% confidence (power spectra not

shown). For the validation period (1881–1980),

the observations show significant quasi-periodic

energy in the range of 2 to 5 years in all four

time–space domains (not shown). The proxies also

capture the quasi-periodic, 2–5 years energy over

both the validation period and in the full record

length. The proxies do not exhibit any significant

energy for periods greater than 5 years, with the

exception of B01, which displays additional energy

at f 24 years (for the full record length). All of

the models demonstrate significant energy at peri-

ods of 2–5 years in all four cases. Six of nine

models also display significant energy between 6

and 10 years in the MALM domain (not shown),

which is not found in any of the proxy or

observational time series. In all four time–space

domains, many of the models exhibit energy at

periods greater than 5 years (not shown), but no

Table 4

F-test results (%)

Model B01 J98 M99 Observations Model B01 J98 M99 Observations

GSLM (%) MALM (%)

ECHAM1 0 0 0 0 ECHAM1 0 0 0 0

ECHAM3 NA NA NA NA ECHAM3 0 0 2 76

ECHAM4 0 0 9 99 ECHAM4 0 0 97 38

GFDL 0 19 0 0 GFDL 0 0 0 0

GFDL R30 14 0 0 0 GFDL R30 11 0 0 0

GFDL 14K NA NA NA NA GFDL 14K 0 0 0 0

NCAR CSM 0 0 0 0 NCAR CSM 0 16 0 0

DOE PCM 0 0 75 20 DOE PCM 0 2 0 0

HadCM2 0 2 0 0 HadCM2 0 0 0 0

GSLO (%) MALO (%)

ECHAM1 0 0 0 32 ECHAM1 0 0 0 29

ECHAM3 NA NA NA NA ECHAM3 0 41 0 12

ECHAM4 0 26 0 10 ECHAM4 3 3 0 2

GFDL 0 0 0 0 GFDL 78 0 0 0

GFDL R30 0 0 0 0 GFDL R30 0 0 0 0

GFDL 14K NA NA NA NA GFDL 14K 95 0 0 0

NCAR CSM 28 0 0 0 NCAR CSM 51 0 0 0

DOE PCM 0 44 0 5 DOE PCM 8 0 0 1

HadCM2 12 0 0 0 HadCM2 55 0 0 0

F-test results of comparisons between model variances and full-length proxy variances or observational variances for the validation period. A

5% significance level is used for evaluation of the null hypothesis (equal variances).
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consistent pattern is evident. Given the large num-

ber of bandwidths analyzed for each time series

and the 10% test significance level, we would

expect roughly this many false identifications of

periodic energy.

5.3. Spectral shape

The lag one autocorrelation coefficient (a) is a

measure of the shape of the power spectrum. An a
value approaching zero indicates a white noise spec-

trum where the signal is entirely uncorrelated. An a
value of one indicates a red noise spectrum where the

signal is highly correlated. (A red spectrum (larger a)
has greater energy in the low frequencies and less

energy in the high frequencies.) Fig. 5 demonstrates

the shape of power spectra with different values of a.
A climate signal should exhibit some degree of red-

ness in the spectrum due to the influence of slow

response systems such as the ocean, which may vary

with the length of the record.

Of the three proxies, only M99 does relatively well

in the validation of a values (Table 5). The M99 a
value for the validation period falls in between the a
values of the observational MALM and MALO

records (Table 6). Both J98 and B01 have much

smaller a values during the validation period than

any of the a values for the observational records.

The observations show higher growing season a val-

ues than mean annual values. In an intermediate

Fig. 4. Detrended NH mean annual temperatures. Only the first 1050 years of GFDL 14K are shown (14000 years total). The proxy data

displayed in the middle panel is the same data displayed in Fig. 3. Other details are also shown in Fig. 3.
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comparison over a period when all three proxies

overlap (1402–1850), the a values for J98 and B01

are almost identical and much closer to that of M99,

although they are still less than the M99 value. Both

M99 and J98 a values decrease when calculated over

the entire period of 1000–1850. Table 6 shows the a
values for the model results for the full length of each

model simulation and for the observations over the

validation period. The models generally compare

favorably with the observations and proxies in both

of the mean annual domains (MALM and MALO),

slightly worse in the GSLM domain, and poorly in the

GSLO domain.

6. Discussion and implications

6.1. Variance

The variance of each time series has been exam-

ined as a first-order analysis of climate variability.

Observational data of the validation period (1881–

1980) indicate relatively low variance particularly for

the combined land and marine cases. The low var-

iance may be due, at least in part, to the relatively

short length of the observational record. Two of the

three proxy records (J98 and B01) have significantly

greater variance over the entire length of the record

compared to the relatively short validation period

(Table 2), which may be due to low-frequency vari-

ability not evident over the short validation period or

to the spatial limitations associated with the proxy

data. However, our sensitivity test of the effects of

incomplete, nonrandom changes in spatial coverage

Fig. 5. Changes in the shape of an AR(1) process power spectrum due to changes in the value of the lag one autocorrelation coefficient (a).

Table 5

Lag one autocorrelation coefficients (a) of the proxies and

observations

Proxies Observations

Period B01 J98 M99 GSLM GSLO MALM MALO

1881–1980 0.10 0.11 0.38 0.58 0.43 0.52 0.27

1402–1850 0.47 0.46 0.60

1000–1850 NA 0.38 0.50

Lag one autocorrelation coefficients (a) of the observations and of

the proxies for three separate time intervals (1000–1850, 1402–

1850, and 1881–1980) are shown.
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through time indicate that variance would be signifi-

cantly lower (based on the F-test results) if spatially

and temporally complete data were available.

Over the validation period, the proxy variances

generally compare favorably with the observational

variances (acceptance of the null hypothesis of equal

variances based on the F-test results). The magnitude

of the M99 variance falls in between the variances of

the MALM and MALO observations, while the J98

and B01 variances (Table 2) tend to be closer to the

observed GSLO and MALO variances (Table 3). This

may be due in part to the ‘‘filtering’’ of the temper-

ature signal by the various proxy indicators and/or to

the types of proxy indicators used for these recon-

structions.

The majority of the models overestimate the

observed variances, and our sensitivity tests demon-

strate that this overestimation may be even greater

than the results indicate. Furthermore, both the prox-

ies and observations are affected by solar variability

and volcanic eruptions that are not present in the

model simulations, which should increase variance

values. Another approach in evaluating the model

variances is to compare the observed ratio of land-

only vs. land and marine variances to the model

simulated ratios (Table 3). The observational variance

for GSLO is f 50% greater than GSLM, while

MALO variance is f 100% greater than MALM

(Table 3). If we assume these relative variances are

correct, then we can evaluate the model variances by

evaluating the ratio of land-only to combined land and

marine variances for both the seasonal and annual

means. When comparing the seasonal means, all of

the models overestimate the observational ratio of

GSLO to GSLM variance. In the annual mean case,

most models overestimate the MALO to MALM

variance as well, although the HadCM2 MALO to

MALM ratio is approximately equal to the observa-

tional MALO to MALM ratio (Table 3).

6.2. Periodic energy

Analysis of periodic energy over the validation

period reveals a strong 2–5 years signal, which is

evident in the mean seasonal and annual NH obser-

vations. The 2–5-year period is a well-known period

and is easily attributed to ENSO. Somewhat surpris-

ing is the lack of a periodic signal greater than 5 years

in the observations. Well-known climatic events, such

as the Pacific Decadal and North Atlantic Oscillations

(Appenzeller et al., 1998; Black et al., 1999), have

return periods of greater than 5 years and presumably

would appear in the observations. The lack of addi-

tional periodic energy may be due to the coverage

affects discussed above, the relatively short length of

the validation period, or to the nature of these climate

processes, which may not manifest consistent (peri-

odic or quasi-periodic) SAT changes over hemispheric

seasonal and annual mean scales. For the full length of

the proxies, only B01 displays significant energy with

a period greater than 5 years (f 24 years). This may

indicate that the ABD calibration truly is preserving

greater low-frequency variability as suggested (Briffa

et al., 2001). Another possibility is the existence of a

quasi-periodic climate signal that is most coherent

during the time span of the B01 record. To test this,

Table 6

Lag one autocorrelation coefficients (a) of the models and observations

GSLM GSLO GSLM/GSLO MALM MALO MALM/MALO GSLM/MALM GSLO/MALO

Observations 0.58 0.43 1.33 0.52 0.27 1.92 1.11 1.60

ECHAM1 0.25 0.16 1.52 0.37 0.26 1.39 0.68 0.62

ECHAM3 NA NA NA 0.41 0.23 1.77 NA NA

ECHAM4 0.33 0.14 2.38 0.51 0.36 1.41 0.65 0.38

GFDL 0.32 0.19 1.64 0.44 0.26 1.70 0.72 0.75

GFDL 14K NA NA NA 0.41 0.24 1.69 NA NA

GFDL R30 0.48 0.28 1.72 0.61 0.41 1.47 0.79 0.67

NCAR CSM 0.22 0.07 3.36 0.40 0.23 1.72 0.55 0.28

DOE PCM 0.23 0.23 1.01 0.37 0.29 1.31 0.61 0.80

HadCM2 0.45 0.23 1.94 0.58 0.37 1.55 0.77 0.62

Model and observation lag one autocorrelation coefficients (a) are shown for all space– time domains (MALM, MALO, GSLM, and GSLO).

Also shown are the ratios of land and marine to land-only a values and growing season to mean annual a values.
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we repeated the spectral analysis of J98 and M99 over

the B01 time interval (1402–1850). The new M99

spectrum does not display any additional periodic

energy (outside of the 2–5-year period), but the J98

spectrum now exhibits a significant peak at f 32

years, supporting the possibility of a quasi-periodic

signal over the period of 1402–1850. A third possi-

bility is that the peak in B01 at 24 years (and at 32

years in time-limited J98) is the result of simple

chance or false peak identification.

All of the model spectra capture high-frequency

energy (2–5 years periodicity) similar to the proxy

and observational spectra. Many of the model spectra

also exhibit significant energy at periods greater than

5 years. Specific attribution of the sources of this low-

frequency variability exhibited by the models is

beyond the scope of this study. Furthermore, some

of these peaks may be due to statistical error as

discussed above. While all of the models have sig-

nificant energy at periods of 2–5 years, it is ques-

tionable if this energy can actually be attributed to a

realistic simulation of ENSO. Bell et al. (2000) found

that many of the models used in this study under-

estimate the tropical variability often associated with

the ENSO signature. Spatial analysis on a model by

model basis is necessary to attribute model variability

to simulation of realistic climate processes.

6.3. Spectral shape

The lag one autocorrelation coefficient (a) of the
power spectra is an important quantitative estimate of

the distribution of internally generated model varia-

bility. Allen and Smith (1994) calculate a = 0.8 for

observed global mean annual temperatures over the

period 1861–1990. They also found that introducing

land and ice data and/or taking a global average

temperature increases the level of autocorrelation,

although our analysis shows lower autocorrelation in

the land-only cases. Since land has less thermal inertia

than oceans or ice and, therefore, less memory, it

follows that the land-only cases should have

decreased levels of autocorrelation, in contrast to the

results of Allen and Smith (1994). Therefore, our

estimates of lower a values may be acceptable for

observations that are not global and, in general, do not

include ice data or the associated land areas where ice

is found (due to the observation coverage). The proxy

autocorrelation coefficients are generally lower than

the observational autocorrelation coefficients over the

validation interval. Our sensitivity test of missing

observational data indicates that the observational a
values are probably too high (more red) and would in

reality be lower (more white) and, possibly, more

similar to the proxy values. For longer intervals where

low-frequency energy should be more evident and

lead to increased a values, the proxy a values are

greater.

The models do an acceptable job of matching the

proxies in the combined land and marine cases, but

they perform poorly in the land-only cases. The

models also compare more favorably with the proxies

mean annually than seasonally. In comparison with

observations, the model a values are fairly similar in

the mean annual cases but always too low in the

growing season cases. Since our sensitivity tests

indicate that the observational a values may be too

high, we compare the observational ratios of the

combined land and marine cases to the land-only

cases (Table 6). The mean annual observed land and

marine a are almost twice that of the MALO case,

while the two cases are more similar during the

growing season. None of the models match the

observed ratio in the mean annual case, although

ECHAM3, GFDL and NCAR CSM get fairly close.

These models get ratios of f 1.73 by simulating

MALO values which are similar to the observed

MALO values, but with reduced MALM values.

The observed growing season ratio is 1.33, meaning

more closely similar a values in the land-only and

land and marine cases. The models generally get a

much higher ratio (greater discrepancies between the

two cases) with the exception of DOE PCM which

actually has a ratio of f 1.0 (equal values in both

cases); however, both values are half of the observed

values, indicating insufficient low-frequency energy.

We also compared the a value ratios of the growing

season vs. the mean annual cases (Table 6). For the

observations, the combined land and marine cases are

very similar and both are greater than the land-only

cases, which is to be expected due to the influence of

the oceans. Both observed a ratios of growing season

to mean annual were greater than 1.0, indicating larger

growing season a values. None of the models were

able to capture the observed distribution of growing

season vs. mean annual energy, resulting in a value
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ratios of growing season vs. mean annual that were

less than 1.0.

7. Conclusions

We have applied quantitative methods to evaluate

the internal climate variability simulated by several

coupled general circulation models and paleotemper-

ature reconstructions. In the process of this evaluation,

we have demonstrated that both the proxy records and

the model results achieve moderate success in pre-

cisely portraying statistics of climate variability.

Although the proxies do not seem to capture the exact

fingerprint of climate variability in terms of the

precise variance, spectral shape, or periodic energy,

they do appear to adequately capture the general

magnitude of Northern Hemisphere climate variabil-

ity. For each measure of variability analyzed, the

models achieved varying degrees of success, with

none of the models consistently capturing the appro-

priate variability. Most of the models overestimate

variance in all four domains. In the analysis of spectral

shape and periodic energy, the models broadly match

the proxies and observations, but probably not entirely

for the right reasons. The models have been shown to

inaccurately portray ENSO; yet, they demonstrate

periodic energy similar to what ENSO would produce.

In terms of spectral shape, the models performed best

in the analyses of mean annual cases, but failed to

capture the distribution of energy between the grow-

ing season and mean annual cases. In general, the

models performed worse in all analyses of the grow-

ing season cases and in the land-only cases. Con-

versely, the models performed best in the analysis of

combined mean annual land and marine variability.
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