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Abstract We present and describe in detail the advan-
tages and limitations of a technique that combines in an
optimal way model results and proxy-data time series in
order to obtain states of the climate system consistent
with model physics, reconstruction of past radiative
forcing and proxy records. To achieve this goal, we se-
lect among an ensemble of simulations covering the last
millennium performed with a low-resolution 3-D climate
model the ones that minimise a cost function. This cost
function measures the misfit between model results and
proxy records. In the framework of the tests performed
here, an ensemble of 30 to 40 simulations appears suf-
ficient to reach reasonable correlations between model
results and reconstructions, in configurations for which
a small amount of data is available as well as in data-rich
areas. Preliminary applications of the technique show
that it can be used to provide reconstructions of past
large-scale temperature changes, complementary to the

ones obtained by statistical methods. Furthermore, as
model results include a representation of atmospheric
and oceanic circulations, it can be used to provide in-
sights into some amplification mechanisms responsible
for past temperature changes. On the other hand, if the
number of proxy records is too low, it could not be used
to provide reconstructions of past changes at a regional
scale.

1 Introduction

Previous simulations covering the last millennium using
climate models were performed with two types of
models. In the first group of models, the high frequency
variability of the atmosphere is not taken into account
(e.g. Crowley 2000; Bertrand et al. 2002; Gerber et al.
2003; Bauer et al. 2003). This means that those models
have very low internal variability on interannual, dec-
adal and even centennial time-scales. The variations
simulated during the last 1,000 years are thus to a very
large extent related to the external forcing applied. The
second type of model includes more sophisticated
atmospheric and oceanic components that allow for a
representation of the variability of the climate system on
interannual to centennial times-scales (e.g. Cubasch
et al. 1997; Waple et al. 2002; Widmann and Tett 2003;
Gonzalez-Rouco et al. 2003; Goosse et al. 2005a, b).
Some of those models have a coarse resolution and in-
clude simplifications that induce an underestimation of
the variance associated with some modes of variability,
in particular in the tropics (e.g. Goosse et al. 2005a, b).
Nevertheless, for this group of models, the simulated
climate evolution includes, as in the real world, a con-
tribution from both internal and forced variations.

The advantage of the first class of models is that they
are generally very efficient and thus numerous sensitivity
tests can readily be made. Furthermore, as the internal
variability is very weak, the response to the forcing can
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be studied easily (e.g. Crowley 2000; Bertrand et al.
2002). On the other hand, as those models do not in-
clude natural variability, model-data comparisons are
difficult to perform, particularly at regional scale where
the role of internal variations is very important (e.g.
Stott and Tett 1998; Goosse et al. 2005b).

Analysing the contribution of the forcing in the
simulations performed with the second group of models
is less straightforward. If an ensemble of simulations is
available for a particular model, the mean of this
ensemble can be used to isolate the forced response of
the system, as the averaging tends to remove the internal
variability (e.g. Goosse et al. 2005a). The statistics of the
simulations can also be compared to the climate recon-
structions (e.g. Jones et al. 1998; Collins et al. 2002) and
the mean spatial pattern of the response to a particular
forcing could be analysed (e.g. Cubasch et al. 1997; Rind
et al. 1999; Waple et al. 2002; Shindell et al. 2001).
However, using only the model results, it is not possible
to determine which realization was actually ‘selected’ by
the climate system among all the possible ones. As a
consequence, a more detailed comparison between the
observed and simulated climate evolution at regional
scale could not be performed in this framework. In
addition, it is not easy to propose a mechanism that
could explain the observed evolution in a region of
interest during a particular period because different
processes could be dominant for different members of an
ensemble of simulations.

The same type of problem occurs for the very recent
past. When performing a simulation of the present-day
climate with a climate model, only the model clima-
tology and its statistics can be compared to observa-
tions. In order to remain as close as possible to the
observed evolution, complex data assimilation tech-
niques are needed, as in the reanalysis project that
covers the last 40–50 years or at smaller time scales for
weather prediction (e.g. Kalnay et al. 1996). The goal
of those data assimilation techniques is to constrain in
an optimal way the model evolution using observa-
tional data.

For the last 50 years, a relatively large amount of
observations is available. Consequently, it is possible to
force the model trajectory to be close to the observed
one on a daily basis. This is not possible for the last
1,000 years as the number of records is much lower and
those records cover only a small fraction of the Earth.
Furthermore, they provide information on seasonal
(annual) time-scales at best. Because of this large dif-
ference in the temporal and spatial resolution, the
technique used in the reanalysis or in weather forecast-
ing could not be used directly for the last millennium.

To overcome these problems, Jones and Widmann
(2003) proposed a nudging method in which the atmo-
spheric circulation is modified at every time step in order
to remain close to a pattern reconstructed from obser-
vations. van der Schrier and Barkmeijer (2005) proposed
a different technique in which an artificial forcing is
added into the model. The goal of this additional forcing

is to ensure that, averaged over the simulation, the
atmospheric circulation is close to a reconstructed one
while leaving the high frequency atmospheric variability
free to evolve according to model dynamics.

Both of those techniques introduce a constraint on
the model evolution through the atmospheric circula-
tion. They are thus only useful if a reconstruction of the
atmospheric circulation is available. As a consequence,
these methods have only been used for selected regions
or periods when a large amount of data is available like
the North Atlantic/European Sector during the years
1790–1820 (van der Schrier and Barkmeijer 2005) or the
very recent past (Jones and Widmann 2003).

Here, we describe a different method that does not
need such a reconstruction of the atmospheric circula-
tion as a pre-requisite. As a consequence, it is not
dependent on the hypothesis used to obtain those
reconstructions and it could be used even for data-sparse
periods. The principle of the method is to select among a
relatively large ensemble of simulations that has been
performed with a global 3-D climate model the one that
is the closest to the observed climate. This selection is
performed by comparing each simulation to available
reconstructions. In this ensemble, the model is driven by
different reconstructions of the forcing during the last
millennium in order to include the uncertainties associ-
ated with the forcing (see Table 1).

We thus propose to search, in a library of model
simulations, for analogues to past conditions recorded
in the proxy records. This is similar to the identification
of analogues in meteorology (or looking for very close
states of the system for two different periods) which has
been widely used in different areas such as atmospheric
predictability (e.g. Lorenz 1969), seasonal forecasting
(e.g. Livezey et al. 1994) and statistical downscaling
(Zorita et al. 1999). Studies of analogues in meteorol-
ogy have shown that it is possible to find mediocre
analogues but finding a very good analogue of a
meteorological situation at a global scale is extremely
unlikely because of the large number of degrees of
freedom of the system (e.g. Lorenz 1969; van den Dool
1994; Nicolis 1998). In that case, van den Dool (1994)
estimates that we need to wait the order of 1030 years to
have an accurate match.

Obtaining a single experiment that would be able to
simulate the observed evolution in the different regions
over the entire millennium would then require a pro-
hibitively large number of experiments. As a conse-
quence, the procedure here is applied for the state of the
climate system averaged over a period that ranges from
10 to 50 years. For each of those periods, a different
experiment can be selected as the ‘‘optimal’’, providing
the best agreement between simulation and the recon-
structions. As a consequence, the proposed method
would not give a real time series of climatic variables
over the whole millennium. If the technique is successful,
it would rather provide for each period a state of the
climate system that is consistent with model dynamics,
with reconstruction of the forcing and with climate
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reconstructions. A future extension of the technique to
provide a nearly continuous reconstruction is however
relatively straightforward as discussed in Sect. 4.

Although the method could also be used to analyse
interannual variability, we are using an averaging period
of 10 to 50 years because the number of degrees of
freedom of the climate system is lower at the decadal
time scale than at the interannual timescale (Jones et al.
1997), making higher the chance to find good analogues
(van den Dool 1994). Secondly, the correlation between
observations and proxies is generally better on decadal
time-scales than on interannual times-scales (Jones and
Mann 2004). It is thus more likely to find a good
approximation of the real past evolution of the system
with a reasonable number of numerical experiments for
such decadal variations.

The main goals of the present study are firstly to test
if the proposed technique could result in a good fit be-
tween model results and reconstructions at a reasonable
cost and secondly to illustrate how this technique could
be an efficient tool in the study of past climate changes.
The model and its forcing are briefly presented in
Sect. 2. In Sect. 3, the method used to select the best
simulations is described and its advantages and disad-
vantages are discussed. In Sect. 4, the general skill of the
method is tested by comparing local model results with a
small number of proxy-based reconstructions of the
climate in various regions of the Northern Hemisphere.
Thanks to the small number of proxies, the model results
can be compared in detail to each proxy time series
providing clear and precise information on the tech-
nique. Using the proxy-based reconstructions described
in Sect. 4, an application of the method is then proposed
in Sect. 5 where the simulated temperature averaged
over the Northern Hemisphere is analysed and com-
pared to the recent reconstructions of Mann and Jones
(2003) and Moberg et al. (2005). In Sect. 6, the method
is applied using the temperature reconstruction of Lut-
erbacher et al. (2004) in Europe for the period 1500–
2000 AD. This allows testing the skill of the method
during a data-rich period and to compare them to the
results described in Sect. 4 for a data-sparse configura-
tion. The study ends with some concluding remark and
perspectives.

2 Model description and experimental design

Our version of ECBILT–CLIO–VECODE is identical
to the one of Renssen et al. (2005) and Goosse et al.
(2005a, b). The atmospheric component is ECBILT2
(Opsteegh et al. 1998; Selten et al. 1999), a T21, three-
level quasi-geostrophic model, with simple parameter-
izations for the diabatic heating due to radiative fluxes,
the release of latent heat, and the exchange of sensible
heat with the surface. The model contains a full
hydrological cycle that is closed over land by a bucket
model for soil moisture. Synoptic variability associated
with weather patterns is explicitly computed. Each
bucket is connected to a nearby ocean grid point to
define the river runoff. Accumulation of snow over land
occurs in case of precipitation when the land temper-
ature is below zero. Cloud cover is prescribed following
a seasonally and geographically distributed climatology
(D2 monthly data set of the International Satellite
Cloud Climatology Project, ISCCP, Rossow et al.
1996).

The CLIO model (Goosse and Fichefet 1999) com-
prises a primitive equation, free-surface ocean general
circulation model coupled to a thermodynamic-dy-
namic sea ice model. The representation of the vertical
growth and decay of sea ice is based on a three-layer
model (Fichefet and Morales Maqueda 1997). In the
computation of ice dynamics, sea ice is considered to
behave as a viscous-plastic continuum. The horizontal
resolution of CLIO is 3� in latitude and longitude and
there are 20 unevenly spaced vertical levels in the
ocean.

ECBILT–CLIO is coupled to the VECODE model
that simulates the dynamics of two main terrestrial
plant-functional types, forest and grassland, and desert
as a third dummy type (Brovkin et al. 2002). It should be
noted that the computed vegetation changes only affect
the land-surface albedo in ECBILT–CLIO, and have no
influence on other processes, e.g. soil hydrology.

The coupled model includes realistic topography and
bathymetry. The only flux correction in ECBILT–
CLIO–VECODE is an artificial reduction of the pre-
cipitation over the Atlantic and over the Arctic. The

Table 1 Description of the experiments

Number of
experiments

Symbol of
the group

Starting
date (AD)

Forcing

Solar Volcanic

25 K 1000 Lean et al. (1995)/Bard et al. (2000)a Crowley (2000)
25 C 1000 Crowley (2000) Crowley (2000)
25 D 1 Crowley et al. (2003) Crowley et al. (2003)
15 B 850 Lean et al. (1995)/Bard et al. (2000)a Crowley et al. (2003)
15 M 850 Bard et al. (2000)a Ammanb

aWe are using the reconstruction of Bard et al. (2000) scaled to match the Maunder minimum irradiance reduction derived by Lean et al.
(1995)
bAs described in Jones and Mann (2004)
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corresponding water is redistributed homogeneously
over the North Pacific (Goosse et al. 2001). The model
simulates relatively well the climate outside tropical re-
gions (Goosse et al. 2001; Renssen et al. 2002). Its sen-
sitivity to a CO2 doubling is 1.8�C, which is in the low
range of coupled atmosphere–sea-ice–ocean general
circulation models. Thanks to the relatively coarse res-
olution and the simplified parameterization used in the
atmospheric model the coupled model is one to two
orders of magnitude faster than a state-of-the-art
atmosphere–ocean general circulation model. More
information about the model and a complete list of
references is available at the address http://
www.knmi.nl/onderzk/CKO/ecbilt-papers.html.

A total of 105 simulations have been performed
covering the last millennium (or longer). All the
experiments are driven by the observed variations of
greenhouse gas concentration and aerosol load due to
human activities during the period 1750–2000, the
influence of sulfate aerosols being taken into account
through a modification of surface albedo (Charlson
et al. 1991). The observed evolution of greenhouse
gases (based on a compilation of ice cores measure-
ments, J. Flueckiger, personal communication) is im-
posed over the pre-industrial period and the forcing
due to change in land-use are taken into account
(Ramankutty and Foley, 1999). The latter forcing is
applied in the model trough a reduction of the area
covered by trees and an increase in grassland as VE-
CODE does not include a specific vegetation type
corresponding to cropland. The simulations take into
account forcing due to variations of orbital parameters
following Berger (1978) as well as forcing associated
with tropospheric ozone changes. The latter forcing is
applied on both longwave and shortwave fluxes as a
time-varying external radiative forcing, constant at
hemispheric scale, using values deduced from Berntsen
et al. (2000). Furthermore, the evolution of solar
irradiance and the effect of volcanism are prescribed
using different combinations of the reconstructions
that have been used up to now in 3-D simulation of
the climate of the last millennium (Table 1). Never-
theless, it should be kept in mind that the large
uncertainties in the reconstruction of those forcings
could have a strong impact on the large-scale tem-
perature patterns simulated by the model (e.g. Ber-
trand et al. 2002; Goosse et al. 2005a).

For each combination of the forcings, the various
simulations differ only in their initial conditions. Those
initial conditions were taken from model states in a
long control simulation and in previous experiments
covering the period 1000–1750. In addition, some sim-
ulations covering the last 2,000 years were started from
a model state simulated with ECBILT–CLIO–VE-
CODE around Year 1 AD in an experiment covering
the whole Holocene but only driven by change in
orbital parameters and greenhouse gas concentration
(Renssen et al. 2005).

3 Selection of the optimal simulations

The ‘‘optimal’’ simulation of the ensemble for each
period is selected as the one that has the minimum of a
cost function CF:

CFkðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1
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modðtÞ
� �

2
v

u

u

t ;

where CFk(t) is the value of the cost function for each
experiment k, for a particular period t. n is the number of
reconstructions used in the model/data comparison. Fobs
is the reconstruction of a variable F, based on observa-
tions, in a particular location for the period t. Fmod

k is the
value of the corresponding variable F simulated in
experiment k in the model grid box that contains the
location of the proxy-record. If the proxy record repre-
sents the evolution averaged over an area larger than one
model grid box, Fmod

k is the average of model results over
the grid boxes overlapping this area. As the proxies are
generally influenced by climate conditions during a par-
ticular period of the year (generally winter, summer or
annual average), Fmod

k is evaluated over the months cor-
responding to the information recorded in the proxies. wi

is a weight factor, characterizing the statistics and reli-
ability of proxy data. We use the additional constraint:

X

n

i¼1
wi ¼ 1

so that adding new observations in the computation of
CF would not artificially increase the value of CF. wi

could be chosen as constant for all i. Alternatively, wi

could be related to the spatial distribution of the proxies
or to the correlation of a proxy with observations during
the instrumental records.

CFk(t) is first evaluated for all the simulations and
all the time periods. The minimum for each t over all k
experiments is then selected and the corresponding
experiment corresponds to the ‘‘best’’ one for this peri-
od. The result of this procedure is, for instance, that the
simulation that minimises CF for the period 1000–1010
is experiment number k=7, for the period 1010–1020,
the simulation k=63, for the period 1020–1030, the
simulation k=31 and so on. In the following, the se-
lected states are grouped together in order to form a
pseudo-time series for an easier comparison with the
observed climate evolution. In this framework, a pseu-
do-simulation for the whole millennium is obtained by
grouping the best simulations for all the periods t. For
simplicity, it will be referred to as the ‘‘best pseudo-
simulation’’. It has a time resolution identical to the
averaging period but it does not consist in a continuous
time series since a jump is possible between each 10-year
(or 25-year or 50-year) time step because different time
steps could be associated with different members of the
ensemble of simulations.
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Any kind of physical variable (e.g. temperature,
precipitation, atmospheric pressure, ocean salinity) can
be used in the computation of CF. As our main goal
here is to test the technique rather than produce a
comprehensive reconstruction including all available
data, we will use here, for simplicity, only the data sets
proposed in two recent studies. In a first step (Sects. 4,
5), to test the method in a data sparse period, we will use
the proxy temperature series in the Northern Hemi-
sphere that have been carefully selected recently by
Mann and Jones (2003) and Jones and Mann (2004)
(Table 2). In a second step (Sect. 6), the temperature
reconstruction of Luterbacher et al. (2004) is employed
to illustrate the skill of the method in a smaller region
where a large-scale, gridded reconstruction is available.

We only consider here the extra-tropical Northern
Hemisphere since more data are available in this region
of the globe. In addition, this alleviates the need to take
into account the response of tropical modes of vari-
ability to changes in the forcing (e.g. Mann et al. 2005a)
that would not be well represented in our model because
of its coarse resolution and some simplifications in the
physics. As in several previous studies, (e.g. Mann and
Jones 2003; Jones and Mann 2004; Moberg et al. 2005),
before computing CF, we will subtract from the time
series of both temperature reconstruction and model
results their mean over a reference period and divided
the obtained anomalies by the standard deviation of the
times series over the same reference period. This mean
and standard deviation are obtained after performing
the averages over the 10, 25 and 50 periods. The years
1856–1980 have been often chosen as a as reference
period (Mann and Jones 2003; Jones and Mann 2004).
Nevertheless, here, we are using a longer one (1601–
1950, except in Sect. 5 where other values are tested)
because we are performing averages over time scales up

to 50 years and a longer reference period gives then a
larger sample to estimate the mean and the standard
deviation.

The first advantage of the proposed technique is that
it is a very simple one. It uses existing simulations so
there is no risk that introducing a data assimilation
technique would require extensive technical develop-
ments and a lengthy method validation as for instance in
the techniques proposed by Jones and Widmann (2003)
or van der Schrierand Barkmeijer (2005). Secondly, the
method does not modify the model physics. So the
optimal simulation is precisely consistent with the model
physics and the forcing for a period t. Third, the method
only requires the output of the simulations. It is thus
possible to perform a large number of tests of the
method at a very small computer cost since new proxy
data can be included as they become available (or ex-
cluded) very easily, without the need to produce a new
ensemble of experiments. In particular, different types of
cost function could be tested readily.

Nevertheless, the technique has also some disadvan-
tages. First, the number of simulations required to reach
a good agreement between model results and proxies is
not known a priori and this number could be quite large.
This is probably not a major problem with the model we
are using as a number of simulations of the order of one
to a few hundred is clearly affordable. Furthermore,
those simulations could also be used for other purposes
such as the analysis of the impact of the uncertainties of
the forcing or to study the variability of the simulations
around the ensemble mean for various regions (e.g.
Goosse et al. 2005a, b). Nevertheless, this could be
prohibitive for more elaborate, computationally inten-
sive models. The second disadvantage is that the method
does not provide a continuous record of the evolution of
the climate system. This is fine for the fast components

Table 2 Proxy series used in the model-data comparison at hemispheric scale (modified from Jones and Mann 2004)

Location/site Abbreviation Reference Decadal correlation with
instrumental data

Western North America
Northern tree linea NTJ Jacoby and D’Arrigo (1989) 0.71
Western United Statesa WUM Mann et al. (1998) 0.61
Western United Statesb WUB Briffa et al. (1992b) 0.66
Jasperb JTL Luckman et al. (1997) 0.49
North Atlantic
Chesapeake Baya CSC Cronin et al. (2003) 0.32
Greenlanda WGF Fisher et al. (1996) 0.75
Greenlandc WGV Vinther et al. (2003) 0.78
Europe
Tornetrask (Fennoscandia)b TOB Briffa et al. (1992a) 0.54
Polar Uralsb PUB Briffa et al. (1995) 0.85
Low countriesa LCV van Engelen et al. (2001) 0.83
Eastern Asia
Mongoliaa MOD D’Arrigo et al. (2001) 0.40
Chinaa CHY Yang et al. (2002) 0.22

aCorrespond to a reconstruction of annual mean temperature
bCorrespond to a reconstruction of summer temperature
cCorrespond to a reconstruction of winter temperature
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of the climate system as an average over a decadal
period already provides a large amount of information.
Nevertheless, the evolution of the low frequency
components of the system could not be studied easily
because of the jumps between the different experiments
selected as the best one for each period t. Using differ-
ent time windows for the averaging could help to test
the importance of this problem, but this would not
suppress it.

An alternative approach would be to use the infor-
mation contained in the proxies directly during the
simulations. For instance, it would be possible to run an
ensemble of simulations for 1 or 10 years, then select the
best of this ensemble as the one that minimises a cost
function CF. The end of this best simulation will be used
as the initial state for a new ensemble of simulations
over the same period and so on for the whole millennium
(e.g. Collins 2003). This would offer the advantage of
providing a continuous simulation of the past climate
that would be as close as possible to the observed evo-
lution and would avoid the jumps between the selected
states obtained when constructing our best pseudo-
simulation. Nevertheless, this procedure is far more
expensive in computer time since it requires a large
number of new experiments before making the first
analysis as well as new experiments for each test. As
such a method has never been tested up to now, it is first
necessary to estimate the skill associated with different
hypotheses and to select the data set that provides the
largest amount of information, using a less powerful but
much cheaper technique, as proposed here. After this
initial step allowing to set up the method, the continuous
reconstruction would be a next step that might provide
for the past millennium an analogue for the model rea-
nalyses performed over the instrumental era of the past
50 years. We can thus consider that here we could pro-
vide information on processes whose time scale is
smaller than the averaging period, using the reasonable
hypothesis that those processes are relatively indepen-
dent from one averaging period to the other. Analysing
the links between two averaging periods or low fre-
quency processes would only be possible when a con-
tinuous reconstruction will be available.

The proposed method does not allow for any con-
clusions regarding the model climatology as only
anomalies are used to compute the cost function.
However, this is not our goal here. Nevertheless, by
selecting among all the possible realizations the simu-
lated evolution that is the closest to the observations, the
technique could help to address possible deficiencies in
the model. For instance, if the model underestimates the
response of some mode of internal variability to a par-
ticular forcing (e.g. Robock 2000; Shindell et al. 2001,
2003, 2004), the technique could help to select a member
of the ensemble in which this mode of variability is
optimal. Furthermore, it is possible to check if system-
atic biases are present in the simulation, such as the best
simulations being always warmer/colder than the
ensemble mean for a long period in a particular region.

This would help to identify some problems in the model
and to propose solutions.

4 General skill of the method

In order to test the skill of the method using proxy-based
reconstructions from various regions of the Northern
Hemisphere extratropics, it is possible to examine the
cost function directly (see below). Nevertheless, analy-
sing the actual pseudo-time series obtained from the
suite of states selected by the minimisation of the cost
function is easier to interpret. For simplicity, we have
chosen to give the same value to all the weights wi in the
computation of CF. wi is thus equal to 1/n where n is the
number of reconstructions (see Sect. 3). The influence of
this choice for wi on our conclusions is discussed in
Appendix 1.

The average correlation between an individual simu-
lation gridpoint and the associated proxy reconstruction
is rather low (first column of Table 3). The correlation is
indeed smaller than 0.3, except for two records (LCV and
CHY). The values are even negative for CSC and WGV!
For the ensemble mean, the values are still low, although
they are generally higher than for the individual mem-
bers. On the other hand, when the method proposed in
Sect. 3 is used to obtain the best pseudo-simulation, the
results are far improved. Indeed, the correlations be-
tween proxy-based reconstructions and the best pseudo-
simulation selected by the technique match the correla-
tions between proxy-temperature estimates and actual-
temperature measurements calculated during the instru-
mental era. For some records (e.g. CSC, WGV and
WUB), the improvement is spectacular since the corre-
lation increases from nearly zero for the individual sim-
ulations to >0.6 for the best pseudo-simulation.

Plotting the time series of the temperatures during the
last millennium allows differentiating two types of
improvement associated with the selection of the best
pseudo-simulation (Fig. 1). For the majority of the re-
cords, the selected state is sometimes warmer than the
ensemble mean, and sometimes colder but always well
within the range of the variability of the ensemble. It is
thus reasonable to consider that the selection procedure
just picks up the model simulation that displays internal
variability that is the most consistent with the observed
one. On the other hand, for one record (CSC), the best
state is colder than the ensemble mean for all but three
10-year averages during the period 1000–1350 AD. If the
CSC proxy-record represents an unbiased estimate of
the large-scale temperature at that time (the correlation
of this record with instrumental data is 0.32), this sys-
tematic difference could be related to a model deficiency
that is cured by the selection procedure. On the other
hand, as this record is known to be related to a fairly
narrow spring season of temperature variability (Cronin
et al. 2003), the differences may relate to the non-rep-
resentativeness of summer mean temperatures by the
proxy record.
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The correspondence between model predicted series
and the associated proxy series is generally good overall,
as illustrated by the high correlations diagnosed, but the
agreement is often not as good in a particular region at a
particular time, as illustrated on Fig. 1. In addition, the
time series of the minimum of the cost function indicates
that there are some time intervals that appear well
reproduced by the model (e.g. 1125–1150, 1375–1425 or
1675–1700 in the example shown on Fig. 2). For those
periods, the value of the cost function is of the order of
0.5. On the other hand, for other intervals (e.g. 1175–
1200 and 1625–1650), the value of CF for the best
pseudo-simulation is higher than 0.8. Those higher val-
ues could be related to an unusual state of the real cli-
mate system. Such a non-frequent pattern of internal
variability would then require additional model simula-
tions in order to have a larger sample of model vari-
ability and thus a higher chance to reproduce the mode
recorded in the proxies. Alternatively, those higher val-
ues of CF could be due to uncertainties in the forcing
applied, to model deficiencies that would prevent a
reasonable simulation of the climate state observed at
this time or to larger uncertainties in the proxy record
during that period. Regardless, this observation under-
scores the fact that the agreement between the best
simulation and the reconstruction could be very different
for different periods. Consequently, a detailed interpre-
tation of the results of even the best simulation must
thus be performed with caution.

The state selected as optimal is generally well within
the range of the ensemble for all individual records
(Fig. 1). However, by construction, the state is located in
the tail of the distribution of CF. One single simulation
very rarely therefore displays low values of CF for
neighbouring periods (Fig. 2). As a consequence, it is
not possible to select the same simulation as an optimal
one for periods longer than the averaging period used to
compute CF.

In order to examine the time-scale dependence of the
compatibility between simulation and observations, it is

useful to compute the value of CF using a 50-year
averaging period for the best pseudo-simulation ob-
tained for the smaller (10 year) averaging period. The
time average of the minimum of CF for 50-year means is
0.66 (Fig. 3). When using the temperatures recon-
structed for the best pseudo-simulation with a 10-year
averaging period, this minimum value of CF for 50-year
average is 0.64. On the one hand, this shows that the
time evolution at lower frequencies is also well repre-
sented when using a 10-year averaging period, suggest-
ing some robustness to the technique. On the other
hand, one must keep in mind that, when using a 10-year
average, the state averaged over 50 years is actually a
blend of up to five experiments that are not necessarily
compatible with each other, in particular for variables
that are not constrained by the proxy records used, such
as in the ocean interior.

Table 3 and Fig. 1 show that the technique proposed
here using an ensemble of 105 simulations provides a
reasonable representation of the observed climate at the
location where proxy records were obtained. It is worth
examining, however, whether such an ensemble size is
either larger than necessary, or too small. To address
this, the evolution of the mean of CF over the 1,000-year
period is analysed as a function of the number of
experiments (Fig. 3). The decrease is large for the first
30–40 simulations. Additional experiments provide some
additional improvement in misfit but the decrease is
much slower. For instance, the changes associated with
the last 50 (25) realisations are of 0.041 (0.016) while only
10 realisations were needed between realisation #20 and
#30 to decrease the cost function by 0.05. A (admittedly
optimistic) linear extrapolation of our results would ap-
pear to imply that about 150 additional experiments
would be required to reduce the cost function by 0.1 and
about 1,000 to reach values of CF close to zero. Such a
large ensemble, if required, is still possible using our
model, though it would be time consuming.

Whatever averaging period is used, the evolution of
CF as a function of the number of experiments is similar

Table 3 Correlation between model simulations and proxy-reconstruction for a 25 year averaging period

Location
(abbreviation)

Mean over the
experimentsa

Ensemble
mean

Best simulation
using 12 data

Best simulation
using 8 data

Best simulation
using 4 data

NTJ 0.26 0.43 0.82 0.51 0.19
WUM 0.27 0.61 0.58 0.59 0.91
WUB 0.19 0.31 0.71 0.33 0.43
JTL 0.24 0.35 0.78 0.76 0.22
CSC �0.07 �0.17 0.64 0.62 �0.01
WGF 0.14 0.23 0.47 0.63 0.88
WGV �0.02 �0.06 0.61 �0.01 0.29
TOB 0.24 0.51 0.71 0.26 0.20
PUB 0.08 0.29 0.76 0.83 �0.02
LCV 0.53 0.68 0.71 0.83 0.94
MOD 0.19 0.33 0.69 0.67 0.92
CHY 0.62 0.75 0.80 0.85 0.60

The best pseudo-simulation is obtained using 12, 8 and 4 proxy records in the computation of CF for column 4, 5 and 6, respectively. The
correlation for the locations that are used to compute the CF are in bold
aThe correlation is first performed for all the simulations and then the average over all the correlation is computed
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Fig. 1 Time evolution of the
normalised temperature
anomalies in 12 regions in the
extra-tropical Northern
Hemisphere. The reference
period covers the years 1600–
1950. The times series plotted
are 10-year averages. The black
line corresponds to the mean
over the 105 simulations while
the grey lines are the ensemble
mean plus and minus two
standard deviation. The blue
line is the pseudo-time series
derived by the succession of the
states that produce the
minimum of the cost function
(i.e. the best pseudo-simulation)
obtained by using all 12 proxies
of Table 2. The red lines are the
proxy reconstruction for the
same region (see Table 2 for the
list of references)
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(Fig. 3a). On Fig. 3a, it also appears that values of CF
are always smaller for 10-year averages than for 50-year
averages. This is due to the fact that for low frequencies,
the internal variability of the model is lower, all the
simulations of the ensemble providing nearly the same
results. The technique proposed here has thus a smaller
impact in the model-data comparison. Besides, the
number of degrees of freedom at interannual time-scales
is higher, making the search of a good analogue more
difficult. Overall, in our experiments, the values of CF
reach thus a minimum for time-scales around 10 years,
but the improvements for this time-scale compared to
the other ones are small.

Interestingly, in our experiments, the number of
experiments needed to achieve reasonable skill levels is
also relatively independent of the number of series used
to compute the cost function (Fig. 3b). Indeed, using
only 2 series for each region (i.e. 8 series in total, see
Table 3) has nearly no impact on the cost function
compared to the full 12 series. Nevertheless, this result is
clearly dependent on the series that are removed. For
instance, suppressing series (e.g. CSC) that display a
relatively low correlation between model data and
proxies induces a decrease of the cost function while
suppressing series with high correlation induces an in-
crease of the cost function. For 4 data points, one in
each region, the signal is clearer as the values of the cost
function are much lower than for 8 or 12 data series. For
such a low amount of data, the correlation between
proxy time series and model results at locations where
the model is constrained is very high. For instance, in the
example selected in Table 4, this correlation is always
higher than or equal to 0.88. However, the shape of the
cost function is the same for 4,8, or 12 data series, with a
large decrease of the cost function for the first 30 reali-
sations and a much smaller one for the last 75 realisa-
tions. This is in good agreement with Fig. 2 that displays
no particular trend in the minimum of the cost function
despite the fact that less data are used to compute CF at
the beginning of the second millennium than after 1600
AD (Fig. 1 and Jones and Mann 2004).

From Table 3 we can also see that the correlation
between the best pseudo-simulation and a particular
proxy record decreases markedly when this particular
proxy is not used in the evaluation of the cost function.
The density of the proxy information using only 12 time

series is obviously very low and the correlation between
the different proxies, for one, is low. As a consequence,
when a proxy series is not used to constrain the choice of
the best pseudo-simulation, the information contained
in the other proxies does not allow for a skillful recon-
struction of the observed time series at this location, thus
yielding a low correlation at this unconstrained location.
When only four data records are used, there is a sig-
nificant risk of over fitting of the model results to the
proxy data constraints employed. In such a case, the
technique provides a close representation of the climate
at the locations where the proxies are used in the com-
putation of CF while, at other locations, the best pseu-
do-simulation may in fact even be worse than the
ensemble mean prediction. Table 3 also illustrates that,
as in any assimilation technique, in order to obtain a
reasonable description of the state of the system in a
particular region, it is necessary to have adequate data
representation in that region. Extrapolating the results
towards regions where no data are available is thus very
risky.

The quality of the best pseudo-simulation will depend
strongly on the quality of the proxy data as the best
pseudo-simulation will tend to follow the signal con-
tained in this proxy series, and the information at one
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Fig. 2 Value of the cost function as a function of time using a 25-
year time-scale for the best pseudo-simulation using 12 proxy
records (black) and for a particular, typical simulation (red)
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Fig. 3 Evolution of the cost function averaged over the last
1,000 years as a function of the number of experiments a for
different averaging periods using 12 proxy records, b as a function
of the number of experiments when using 12, 8 or 4 proxy data
series in the computation of CF for 25-year averages and c as a
function of the number of experiments for the experiments of group
K, C, D and a blend of all the groups (see Table 1)
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location cannot alleviate data quality problems at other
locations when only a few proxies are used. Neverthe-
less, the main troubles related to the extrapolation to
regions where no proxy is available (or not used in the
computation of CF) does not appear to be related to the
proxy themselves or to errors in the forcing. When
performing idealised experiments in which instead of
proxies, pseudo-proxies derived from an independent
simulation are used in the computation of CF to choose
the best simulations, the conclusions are similar (see
Appendix 2). This means that, according to our results,
whatever the quality of the proxy record, forcing and
model, it is necessary to have a reasonable number of
proxies in order to make a good spatial reconstruction
of the past temperature variations. The tests performed
here have shown that 12 is clearly not enough.

In Fig. 3c, we examine the evolution of CF for the
simulations of the group K, the group C, the group D or
a blend including five simulations of each group. For the
forcings described in Table 1, the convergence of the
method as well as the values of the cost function are
nearly identical if we use one or several different forc-
ings. Furthermore, the values of the cost function are
very similar for the different forcing scenarios. This
arises from the fact that, in our simulations, the natural
variability is large enough to mask for the differences in
the forcings applied (see also Goosse et al. 2005a). As a
consequence, the comparison of proxy series with model
results in the present framework thus does not allow for

a determination of which forcing history is associated
with the greatest consistency between model results and
proxy data.

5 Simulation of the hemispheric mean temperature

The analyses performed above serves to illustrate the
details of the technique, but the amount of data used is
too low to obtain a reasonable estimate of the regional
pattern of the climate evolution during the last
1,000 years. However, it is possible to analyse the evo-
lution at the hemispheric scale. It is worthwhile, in
particular, to compare our results to recent reconstruc-
tions of annual Northern Hemisphere mean tempera-
ture. We first consider the reconstruction of Mann and
Jones (2003), as all the proxy records used here are also
included in their study. We note, nonetheless, that most
alternative reconstructions agree well with this recon-
struction within its estimated uncertainties (see Jones
and Mann 2004, Fig. 5). One limitation in the present
analysis is that, no proxy information in the tropical
Northern Hemisphere is used (see Table 2) and future
generalisations of this study will seek to incorporate
tropical proxy records (e.g. long coral series in the
tropical Pacific, Indian, and Atlantic oceans) as con-
straints. At this stage, it should be recalled that the
reconstruction of Mann and Jones (2003) is not used in
the computation of CF. Our selection of the best pseu-

Fig. 4 a Time evolution of the
normalised temperature
anomaly averaged over the
Northern Hemisphere. The
times series plotted are 10-year
averages. The black line
corresponds to the mean over
the 105 simulations while the
grey lines are the ensemble
mean plus and minus two
standard deviations. The blue
line corresponds to best pseudo-
simulation while the red line is
the reconstruction of Mann and
Jones (2003). b Time evolution
of the anomaly of annual mean
temperature (in Kelvin)
averaged over the Northern
Hemisphere for the best
pseudo-simulation (left vertical
axis). The red line is the
reconstruction of Mann and
Jones (2003) (left vertical axis)
and the light blue one the
reconstruction of Moberg et al.
(2005) (right vertical axis)
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do-simulation is thus independent of the statistical
technique used by Mann and Jones (2003) to reconstruct
the hemispheric mean temperature.

It should first be noted that the agreement between an
individual member of the ensemble with this proxy-
based reconstruction is much higher for the hemispheric
mean series than for the regional times series presented
in Table 3. This is expected, as the role of natural vari-
ability relative to the forced variability is reduced at
hemispheric scales (Goosse et al. 2005b). For averaging
periods of 10 to 50 years, this correlation with individual
members has a mean between 0.60 and 0.72. The best
pseudo-model simulation has even a better correlation:
it is larger than 0.78 for all the time scale and for all the
cost functions selected here. The best correlation (0.84)
is reached for a 25-year average.

As shown on Fig. 4, the best pseudo-simulation is not
very different from the ensemble mean. This illustrates
the important role of the radiative forcing used in the
simulations. Without a reasonable forcing, it would not
be possible to produce a simulation of the temperature
at hemispheric scale that closely matches the observa-
tions, even if a technique such as that proposed here is
used. Nevertheless, some differences between the best
pseudo-simulation from the ensemble mean do produce
an even closer match with the Mann and Jones (2003)
reconstruction. For instance, the warmest temperature
before the twentieth century in the ensemble mean oc-
curs in the middle of the twelfth century while this per-
iod is colder than the one before and the one after it in
both the reconstruction and the best simulation. Some
differences between the model results and the Mann and
Jones (2003) remain but they are well within the error
bars of both model results and of the reconstruction.

The comparison in Fig. 4a has been performed for
normalised anomalies but a similar conclusion would
have been obtained for the temperature anomalies them-
selves (Fig. 4b). This is not a consequence of the technique
used here as all the time series are divided by their stan-
dard deviation before computingCF. This is rather due to
the fact that our simulations have nearly the same stan-
dard deviation as the Mann and Jones (2003) recon-
struction (Goosse et al. 2005b). For instance, for the best
pseudo-simulation using an averaging period of 10 years,
the standard deviation reaches 0.117�C while in the value
for the Mann and Jones (2003) reconstruction is 0.103�C.
When using a longer interval to scale their record (the
years 1856–1995), the standard deviation of the recon-
struction of Mann and Jones (2003) is about 25% higher
(see ftp://www. ftp.ncdc.noaa.gov/pub/data/paleo/con-
tributions_by_author/jones2004/jonesmann-nhrecon-re-
scale.txt), which is still close to the model values. We have
also computed the best pseudo-simulation using 1860–
1980 instead of 1600–1950 as a reference period in order to
be closer to the one chosen byMannand Jones (2003). The
influence on our results is minor, the changes due to the
choice of a different reference period being difficult to see
by eye while the modification of the variance being of the
order of 10% (not shown).

The reconstruction of Mann and Jones (2003) is
based on statistical methods calibrated using recent
temperature data, assuming thus some stationarity of
the links between proxies and climate at the hemispheric
scale during the whole millennium. This assumption
seems in good agreement with our simulations as very
similar results are obtained using the comparison be-
tween the results of a 3-D climate model and the proxy
reconstruction. Nevertheless, as the range of tempera-
ture simulated by various models over the last millen-
nium is quite large (Jones and Mann 2004), the
agreement could be model dependent and further
experiments are needed to examine this point.

The technique proposed here gives thus a better
representation of the climate not only at locations where
proxy data are used to constrain the model evolution,
but also at the hemispheric scale, which is not con-
strained by observations. As a consequence, the
improvement at regional scales does not in general come
at the expense of favourable comparisons at the hemi-
spheric scale. This is not, however, true in all cases. For
instance, using only four proxy series to select the best
pseudo-simulation, the correlation between the best
pseudo-simulation at the hemispheric scale and the
Mann and Jones (2003) reconstruction is lower than the
one for individual members, illustrating again the over
fitting of the model results to available data in this case.

Fig. 5 Correlation over the years 1500–2000 AD between the best
pseudo-simulation and the reconstruction of Luterbacher et al.
(2004) in winter (DJF, top) and in summer (JJA, bottom) for a 10-
year averaging period
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In Fig. 4b, we have also displayed the recent recon-
struction of Moberg et al. (2005). The comparison with
our best pseudo-simulation is less straightforward
compared to Mann and Jones (2003) reconstruction, as
different proxy-data have been selected by Moberg et al.
(2005). Nevertheless, the shape of this reconstruction is
very similar to our best reconstruction for the pre-
industrial periods, the curves diverging only after 1950
(i.e. the last 30 years of the reconstruction of Moberg
et al. 2005). Overall, the correlation between our best
pseudo-simulation and Moberg et al. (2005) recon-
struction for 10-year averages is 0.68. On the other hand,
the magnitude of the changes is very different, the
standard deviation of the reconstruction of Moberg
et al. (2005) (0.20 K for the period 1600–1950, using a
10 year average) being about two times larger than the
one of our best pseudo-simulation or than in Jones and
Mann (2003) (see for instance Mann et al. 2005b for a
discussion of the differences between various recon-
structions). This illustrates clearly that the technique
used here could bring some useful information about the
relative temperature changes during the last millennium
but could not help in determining the magnitude of
those changes. To increase or decrease the magnitude of
the model temperature variations, it would be necessary
to modify the amplitude of the model response to
external forcing and thus would require some parameter
changes or some modifications of the representation of
physical processes in the model.

6 Model-data comparison of temperature in Europe

In order to compare model results with the European
temperature reconstruction of Luterbacher et al. (2004)
for 1500–2000 AD, their data have first been interpo-
lated on the model grid. Then, the cost function has been
evaluated for each model run and each period, using the
formula described in Sect. 3. In the computation of CF,
the sum is performed over all the model grid points for
which data are available and the differences in the sur-
face of the different grid boxes is taken into account
through the weights wi. The computation is done once
per period (for instance once for a 10-year period),
including both summer (JJA) and winter (DJF), mean-
ing that the same simulation is selected as the best one
for all the seasons.

The evolution of CF as a function of the number of
experiments is similar to the one described when using
12 proxy records in Sect. 4: the value of CF decreases
quickly for the first 30 experiments while the decrease is
much smaller for the following experiments. The value
of CF obtained after 105 experiments is 0.85 for 25-year
averages, i.e. about 0.2 higher than for the 12 proxy-data
(Sect. 4). As expected, the model seems thus to have
more trouble to reproduce the temperature at grid scale
than at a larger scale. Nevertheless, even for such a
stringent test at grid scale, the correlation between the
reconstruction and the best pseudo-simulation is rea-

sonable. For decadal averages (Fig. 5), the correlation in
winter is higher than 0.7 in the centre of the domain for
the period 1500–2000 AD. Smaller correlation is found
near the boundaries, probably because of the influence
of the unconstrained regions outside of Europe. Those
smaller values might also reflect a lower quality of the
reconstruction in regions where a small amount of proxy
records is available. In summer, the correlation is lower,
in particular in Eastern France/South-western Germany.
The minimum correlation corresponds to the Alps in the
model that culminates at less than 1,000 m because of
the coarse resolution of the model. This bad represen-
tation of the topography as well as of the local soil
characteristics and of the particular physical processes
important for mountainous regions leads to a poor
agreement between model and reconstructions. For
reasons that need to be investigated, the problems are
apparently more important in our model in summer
since winter anomalies are relatively well reproduced
there.

The agreement between the best pseudo-simulation
and the reconstruction of Luterbacher et al. (2004) is
encouraging but a model could not be used to provide
information at grid-scale. In any model, one should ra-
ther analyse patterns that cover at least a few grid points
in order to have a chance to simulate the important
physical processes at this scale. Fortunately, constrain-
ing model results at grid-scale also provide good agree-
ment at large-scale as described on Fig. 6. Averaged
over Europe, the major observed variations are quite
well reproduced by the best pseudo-simulation, as for
instance the very cold condition in winter during the late
seventeenth century or the warming in summer during
the 1940s–1950s and the following cooling during the
1960s–1970s. Figure 6 displays changes in the norma-
lised temperature, because the technique is designed to
obtain optimal information on this variable. Neverthe-
less, the agreement on absolute temperature is also good,
as our model has nearly the same standard deviation as
the reconstruction of Luterbacher et al. (2004) at dec-
adal scale (Goosse et al. 2005b).

Up to now, we have not considered the interannual
variations but we mention that subject briefly here as the
data of Luterbacher et al. (2004) provide a better esti-
mate of the changes at this frequency than the proxies
used in Sect. 4. The evolution of the cost function for
interannual changes is similar to the one described above
for 10-, 25- and 50-year averages. The correlations be-
tween model results at interannual-scale have the same
magnitude as for 10-year averages in winter and are even
slightly higher in summer. As for the 10-year average,
the large-scale agreement between model results and
reconstruction is fine when averaged over Europe, both
for the interannual variations themselves and for the low
frequency changes (Fig. 7). We must recall that those
low frequency changes of the best pseudo-simulation are
not easy to interpret since a 25-year period in the best
pseudo-simulation could come from 25 different exper-
iments. Nevertheless, in the present framework, we
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wanted just to underline that the good agreement at
interannual scale was not obtained at the expenses of the
low frequency changes. Furthermore, those results
illustrate that the technique described here could be used
for interannual variations at a reasonable cost, if one is
interested in phenomena occurring during one particular
year.

Constraining the model results with 12-proxy dis-
tributed in the Northern Hemisphere could provide an
alternative reconstruction of temperature changes at
hemispheric scale (Sect. 6). This is not the case when
using the Luterbacher et al. (2004) reconstruction as no
data are available outside Europe. Furthermore, Lut-
erbacher et al. (2004), thanks to the relatively high
amount of observational records, provide already a very
good spatial distribution of the temperature changes.
The best pseudo-simulation brings thus very little addi-
tional information on temperature in Europe.

On the other hand, the best pseudo-simulation could
be used to analyse in detail changes during a particular
period. For instance, Fig. 8b, display the surface tem-
perature in the best pseudo-simulation for the period
1690–1700, the coldest decade in Europe in winter
(Fig. 6). Actually, this decade was also the coldest in
spring in Europe (Xoplaki et al. 2005) while autumn and
summer did not show exceptional conditions (Luterb-
acher et al. 2004; Xoplaki et al. 2005). On Fig. 8, the
temperature changes that are locally smaller than one
standard deviation computed for the 10 simulations with

the lowest value of CF are masked. Indeed, this means
that among all the simulations that have a low value of
CF, very different temperature changes could be found
and thus the changes displayed on the average are not
significant.

In addition to the information contained in the
reconstruction (Fig. 8a), Fig. 8b suggest that the tem-
peratures in the eastern Atlantic where also lower than
the mean during the period 1690–1700, a region where
no data are available in the Luterbacher et al. (2004)
reconstruction. Significant cooling is also noticed in the
best pseudo-simulation during this period off the eastern
US and Japan coasts as well as in tropical areas (not
shown). Nevertheless, the later results must be taken
with caution because of the poor representation of
tropical dynamics in the model.

Furthermore, the technique could be used to analyse
the atmospheric and oceanic circulation during this cold
period over Europe. The advantage of analysing the
European area is that model results could be compared
to the reconstruction of sea level pressure of Luterbacher
et al. (2002). We must insist here that this reconstruction
is not used to constrain model results so the comparison
really provides a test of the quality of the technique on
variables that are not directly constrained. Instead of sea
level pressure, we have shown on Fig. 9 the geopotential
at 800 hPa because it is the model dynamic variable that
is the closest to sea level pressure. Figure 9 shows that

Fig. 6 Time series of the normalised temperature anomaly for a 10-
year averaging period in Europe in the best pseudo-simulation
(blue) and in the reconstruction of Luterbacher et al. (2004) (red) in
winter (DJF, top) and in summer (JJA, bottom)

Fig. 7 Time series of the normalised temperature anomaly in
winter for a 1-year averaging period in Europe in the best pseudo-
simulation (blue) and in the reconstruction of Luterbacher et al.
(2004) (red). On the bottom panel, a 21-year running mean has been
applied to the time series
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the agreement between the best pseudo-simulation and
the reconstruction is quite good for this period. Both
display a maximum of the anomaly close to Iceland and
a minimum over Southern Europe, leading to a decrease
in the intensity of the westerly winds over the Atlantic
and Europe. Some local differences are also present but
as the large-scale changes are reproduced in a very sat-
isfactory way by the best pseudo-simulation, it is pos-
sible to use model results to analyse the atmospheric
processes responsible for the temperature changes. In
particular, the changes in atmospheric circulation are in
good agreement with the hypothesis that the particularly
cold conditions of the late seventeenth century are re-
lated to a smaller inflow of warm air from the Atlantic
towards Europe (e.g. Luterbacher et al. 2001; Shindell
et al. 2001, 2003).

No reconstruction of the ocean current during the
late seventeenth century is available to compare with
model results. Nevertheless, it is instructive to note a
clear decrease in the intensity of the Gulf Stream/North
Atlantic Drift at surface. This results in a slower
northward transport of warm oceanic water and suggest
that both oceanic and atmospheric circulation play a
role in the cold conditions observed during this period.
Such a role of the oceanic circulation is in agreement
with the recent results of van der Schrier and Barkmeijer
(2005).

Analysing the best pseudo-simulation during the
1690–1700 period suggest that the technique described
here could help in understanding the mechanisms
responsible for the temperature changes during a par-
ticular period of the past. Nevertheless, we have chosen
on purpose an example favourable to the method, in
order to show its potential. The 1690–1700 period has a
clear and strong signal (which is due to a large extent in
the model to internal variability, see Goosse et al. 2005b)
that is reasonably well reproduced by the model. On the
other hand, during some periods, no robust changes
could be obtained from the simulations, the experiments
displaying low value of CF presenting different changes
in atmospheric and/or oceanic circulation. As a conse-
quence, model results could only be used to describe
some reasonable circulation patterns that could lead to
the changes noticed in the reconstruction. Only addi-
tional data could help in selecting among all the pro-
posed hypothesis the one that is the more likely. In this
framework, the technique proposed here could help in
determining the optimal location of the new data, cor-
responding to regions where the different hypothesis
leads to large differences.

7 Discussion and conclusions

We have proposed a method to select among a relatively
large ensemble of simulations covering the last millen-
nium those that are the closest to proxy temperature
data. This procedure provides then a state of the climate
system that is consistent with estimates of external
forcing, the proxy-records and with model physics. The
only inconsistency with model physics are the jumps that
are obtained when grouping the different states selected
in a pseudo-simulation. Unfortunately, this forbids the
analysis of low frequency changes in the deep ocean but
allows for studying changes in atmospheric and ocean
surface circulation, as done for instance by van der
Schrier and Barkmeijer (2005) for a 30 year period.
Furthermore, the technique could be easily improved at
a later stage to solve this problem (Collins 2003).

The proposed technique is very simple as it only re-
quires the computation of a cost function that provides a
quantitative estimate of the difference between the
model results and the proxy-data. Nevertheless, the tests
presented here demonstrate that the procedure allows
for a generally favourable comparison between model
and reconstructions, both in configurations where only a
few data are available as well as in cases where a large
amount of data is used to constrain model results.

This high level of skill in the method is achieved using
a modest number of simulations, with 30 experiments
being a reasonable lower limit. In the tests performed
here, the ensemble size required to yield good agreement
between model results and proxy-data appears to be
largely independent of the time scale, the number of
proxy series, or the cost function used. The technique is

Fig. 8 Normalised temperature anomaly in winter (DJF) during
the period 1690–1700 AD in the reconstruction of Luterbacher
et al. (2004) (top) and for the best pseudo-simulation (bottom). Not
significant model results are masked (see text for more details)
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thus clearly practical for 3-D climate models such as the
one used in this study.

Our main goal here was to test precisely the advan-
tage and limitations of the technique, to prove that the
technique could bring very useful information in differ-
ent conditions on a wide variety of spatial and temporal
scales and thus to encourage future use of this technique.
Nevertheless, in the two examples proposed here, the
proxies contain only a small number of degrees of
freedom, because the number of proxies itself is small

(Sects. 4, 5) or because the focus is on a small area
(Europe, Sect. 6). In such a case, the probability to find
a good analogue in a sample of relatively small size is
good (van den Dool 1994). Besides, if we were using a
large number of proxy records, covering the whole earth,
the number of degrees of freedom would increase sig-
nificantly. This could also be the case if we had selected
additional proxies recording other variables than surface
temperature such as precipitation, sea surface salinity,
wind direction and or wind magnitude. In order to find

Fig. 9 Anomaly of winter
(DJF) sea level pressure during
the period 1690–1700 AD in the
reconstruction of Luterbacher
et al. (2002) (in hPa, top),
anomaly of 800 hPa
geopotential height (in dam,
middle) and anomaly in surface
ocean current (bottom) in the
best pseudo-simulation
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an analogue in an affordable number of simulations, it
would then likely be necessary to reduce the number of
freedom of the system, for instance by spatial filtering or
by focussing on a few leading empirical orthogonal
functions (van den Dool 1994). This will be tested in the
near future.

The required ensemble size could also be model-
dependent as a higher resolution model could, for in-
stance, contain more degrees of freedom. On the other
hand, in our model, the response of the dynamical
modes of variability to changes in forcing is generally
modest, as these modes exhibit mainly internal, rather
than externally-forced, variability. The observed chan-
ges in those modes of variability can thus only be
reproduced through changes in model internal variabil-
ity. By contrast, some models that incorporate a more
sophisticated representation of certain atmospheric
physical and chemical processes (e.g. Shindell et al.
2001) simulate a stronger response of the dynamical
modes of variability to the forcing. If these responses are
representative of true climate responses, fewer experi-
ments would be required by such a model to get a good
agreement between model and observation, as the forced
response would already include a significant part of the
changes in the dynamical modes.

Using a small number of proxies, the uncertainties
could be very large in areas that are not included in the
evaluation of the cost function. As a consequence, the
best pseudo-simulation selected by the technique pro-
posed here could not be used to provide a reliable esti-
mate of the regional distribution of the changes. It can
only provide various patterns that are all compatible
with the available proxies. On the other hand, the
technique could be used to propose a reconstruction at
large scale that is complementary to the ones obtained
using statistical methods, as illustrated here for hemi-
spheric averages.

In regions where more data are available, the tech-
nique could be used to make some extrapolation to
nearby areas not covered by the proxy-data, but this
must be done with great care as the quality of the
extrapolation depends on the location and the period
investigated. In each future application of the technique,
it will thus be necessary to test precisely the robustness
of such an extrapolation. In addition, when enough data
is available, the method could also provide information
on variables that are not recorded on the proxies such as
wind pattern or ocean current. This is very useful to
study the processes or mechanisms responsible for the
anomalies recorded in the proxies or conversely the
impact of the temperature anomalies on other variables.
Even if it is not possible to find robust mechanisms in
the different simulations selected, the method will pro-
vide some indications of possible mechanisms that could
be tested with more widespread proxy data networks.

Finally, as proxy-data are also influenced by non-
climatic factors, if a dense network of proxy data is used
to constrain model results, the method proposed here
could be valid to isolate problematic proxy series.

Indeed, the technique selects a state that is in reasonable
agreement with all the neighbouring proxies and with
model dynamics. As a consequence, if one or a small
subset of proxy records suffer from non-climatic biases,
the selected optimal state might be used to identify dis-
crepancies of these records from the predicted state.
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8 Appendix 1: Influence of the choice of the
cost function

In the main text, in the computation of the cost function
(hereafter referred to as CF1), all the weights wi have the
same value (see Sect. 4). Here, we study the influence of
the choice of the cost function by selecting different wi.
In the first additional CF (CF2), wi is proportional to the
correlation between the proxy-based reconstruction and
instrumental temperature data (Table 2). The goal is to
give more weight in the evaluation of the cost function
to the proxy record that provides a better reconstruction
of the temperature. Finally, in the second additional CF
(CF3), the data density is taken into account in a simple
way: the weight of a record is proportional to its cor-
relation with instrumental data as for CF2 but, in
addition, is divided by the number of records in the same
region. As WUM, WUB, JTL (Table 2) all provide
information on the Western United states and Canada,
their weight is divided by three while the weight of WGF
and WGV (Western Greenland) is divided by two.

As expected, the correlations using CF2 are generally
lower than with CF1 for the records that exhibit a low
correlation with instrumental data (e.g. CSC), while they
are greater for the records that exhibit a high correlation
with instrumental data (e.g. PUB and LCV) (Table 4).
For CF3, the correlations tend to be lower for the re-
cords located in data-rich regions than with CF2 (e.g.
WUM, JTL) while the other correlations do not change
significantly.

The convergence of the method is similar for the three
cost function tested. Nevertheless, Fig. 10 shows that
using CF2, the value of the cost function is lower than
using CF1. This means that the model is generally in

180 H. Goosse et al.: Using paleoclimate proxy-data to select optimal realisations



closer agreement with proxy records at locations where
the proxy has itself a good correlation with instrumental
data and shows less good agreement at locations where
this correlation is lower (e.g. CSC or MOD, see Ta-
ble 3). Nevertheless, this is not universally true. For
example, the agreement between model results and
proxy records is good for record CHY though the cor-
relation with instrumental data is low. On the other
hand, CF3 yields nearly the same correlation as CF2. As
a consequence, taking into account the density of the
proxies for the different regions does not seem to have
an important influence on the value of the cost function
in the present framework.

9 Appendix 2: Testing the technique using synthetic
time series

A lack of consistency between the proxy records and the
best pseudo-simulation selected by the technique pro-
posed here could be due to different factors. First, this
could be due to a too small number of simulations that
does not allow finding a good analogue to the real
evolution of the climate system. Second, this could be
related to model deficiencies, the model not being able to
simulate correctly some processes at large-scale or at the
scale recorded by the proxy. Third, the uncertainties on

the forcing evolution are quite large with a potential
impact on the simulated results. Fourth, proxies do not
only record changes in climatic conditions, they are also
affected by non-climatic factors. The interpretation of
proxy-record is also sometimes very difficult (e.g.
Bradley 1999; Briffa 2000; Jones and Mann 2004).
Among all those possible sources of discrepancy be-
tween model and observations, only the first one is re-
lated to the technique itself.

In order to make tests focussed only on the technique,
we have made one additional simulation with ECBILT–
CLIO–VECODE driven by both natural and anthro-
pogenic forcings as in the ensemble of 105 simulation
analysed here. From this simulation, we have extracted
12 time series at the same locations as the ones used in
Sect. 4. Using, those 12 time series as pseudo-proxies, we
have then tried to find the simulations among the
ensemble of 105 which were the closest to the additional
experiment. In this case, all the differences between the
pseudo-proxies and the best pseudo-simulation will be
related to the technique itself. Model errors would have
no impact, as the same model is applied in all the sim-
ulations, the same forcing is used in the ensemble and in
the additional simulation and the pseudo-proxies are
perfect indicators of model temperature.

Table 5 provides results that are very similar to Ta-
ble 3 when real proxies were used. The correlation is
better for pseudo-proxies as expected but the difference
is not very large. When using the pseudo-proxies, the
cost function for 12 data using a 25-year averaging
period, has a value of 0.60, while it was 0.65 for real
proxies. When the number of proxies used to constrain
the choice of the best simulation is reduced, the corre-
lation between pseudo-proxies and the best pseudo-
simulation is lower at locations not used in the compu-
tation of CF. For some locations, the decrease is small.
For instance, the correlation between the pseudo-proxy
record for WUB and the best pseudo-simulation using
eight data (two in North America) is 0.70. This contrasts
with the real proxy for which the correlation drops to
0.33 in the same type of experiment. Apparently, the
constraint in the model results is still high enough for the
Northern America when using two pseudo-proxies. In
particular, the area corresponding to WUM and WUB
are partly overlapping (Jones and Mann 2004). On the
other hand, when using real proxies, we must take into
account that the correlation between the proxy records
WUB and WUM is quite weak. In such a case, con-
straining model results using WUM is thus of little help
in obtaining a good correlation between WUB and the
best pseudo-simulation. For some other locations, like
WGV, the constraint in nearly the same area but for a
different season (WGF) is not sufficient to give a good
correlation between the pseudo-proxy records and the
best pseudo-simulation (Table 5). For TOB, when using
four proxies, the correlation is even smaller than 0.20.
On average, the correlations using four proxies are not
very high at locations not used in the computation of
CF, but still higher than using the real proxies.
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Fig. 10 Evolution of the cost function using 12 proxy records
averaged over the last 1,000 years as a function of the number of
experiments for different cost functions

Table 4 Correlation between model simulations and proxy-recon-
struction for a 25 year averaging period

Location
(abbreviation)

Best simulation
using CF1

Best simulation
using CF2

Best simulation
using CF3

NTJ 0.82 0.85 0.86
WUM 0.58 0.81 0.51
WUB 0.71 0.79 0.80
JTL 0.78 0.61 0.41
CSC 0.64 0.28 0.52
WGF 0.47 0.59 0.63
WGV 0.61 0.76 0.51
TOB 0.71 0.70 0.77
PUB 0.76 0.80 0.86
LCV 0.71 0.86 0.84
MOD 0.69 0.66 0.73
CHY 0.80 0.65 0.80
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We have also performed the same type of test, but
this time using a higher density of proxies in a particular
region (Table 6). To do so, in addition to the pseudo-
proxy records used above, we have selected 8 additional
pseudo-proxies: low countries in summer (LCS) and in
winter (LCW) (in order to avoid duplicate information
LCV is not used anymore), Western Russia in summer
(RUS) and Winter (RUW), Switzerland in summer
(SSB) and in winter (SWM), Eastern France in summer
(BSC), Czech lands in summer (CLS) and winter
(CLW).

Again, in some case, the correlation between the
pseudo-proxy and the best simulation can be very good
for some pseudo-proxies that are not used in the com-
putation of CF. For instance, the correlation for Eastern
France (BSC) is very high, the information form Swit-
zerland (SSB, SWM), an adjacent grid box compare to
the one corresponding to eastern France in the model,
providing a strong constraint on the choice of the best
simulation. On the other hand, for TOB, the correlation
is very low as soon as this record is not used in the

computation of CF, the pseudo proxies in the nearby
Western Russia being of little help.

Those experiments using pseudo-proxies show thus
results similar to the ones obtained using real proxies.
Extrapolating toward regions where no proxy is avail-
able should thus be performed with great care. In some
cases, the information contained in nearby location
could be sufficient but it is not a general rule. It is nec-
essary to test in each case if this extrapolation is rea-
sonable, providing robust results in the model world, as
for instance done in Sect. 6 (Fig. 8). The potential
inadequacies in the forcing, model formulation or in the
interpretation of the proxies provide additional source
of trouble in this extrapolation.

On the other hand, for annual mean hemispheric
temperature, the correlation between the best pseudo-
simulation and the one of the additional simulation is
higher than 0.9, if more than eight pseudo-proxy records
are used. For an average over Europe, the correlation
between the best pseudo-simulation and the additional
simulation is higher than 0.80 for annual, summer and
winter mean temperatures, except in the cases where
only four pseudo-proxy records are used in Europe. This
shows that using the best pseudo-simulation to make an
average over a relatively large region is a much safer
procedure than the extrapolation to region where no
data is available.
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