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[1] We present an easily implemented method for
smoothing climate time series, generalizing upon an
approach previously described by Mann (2004). The
method adaptively weights the three lowest order time
series boundary constraints to optimize the fit with the raw
time series. We apply the method to the instrumental global
mean temperature series from 1850–2007 and to various
surrogate global mean temperature series from 1850–2100
derived from the CMIP3 multimodel intercomparison
project. These applications demonstrate that the adaptive
method systematically out-performs certain widely used
default smoothing methods, and is more likely to yield
accurate assessments of long-term warming trends.
Citation: Mann, M. E. (2008), Smoothing of climate time

series revisited, Geophys. Res. Lett., 35, L16708, doi:10.1029/

2008GL034716.

1. Introduction

[2] Climate time series often exhibit non-stationary sta-
tistical behavior, including long-term trends that are asso-
ciated with exogenous forcing such as increasing
greenhouse gas concentrations. This behavior presents
problems for many traditional smoothing methods which
assume stationary time series behavior. Particularly prob-
lematic in this context is the issue of how best to smooth
time series with trends near the boundaries, where the
smoothing window runs into the ends of the series. These
considerations are non-trivial, because the smoothing of a
time series near its boundaries is not uniquely defined; the
behavior of the ‘smooth’ is dependent in part on the
unknown behavior of the time series outside the interval
for which data are actually available.
[3] Such issues have been examined in the past geo-

sciences literature [e.g., Park, 1992; Ghil et al., 2002;
Mann, 2004; Arguez et al., 2008]. Mann [2004] described
a specific method for dealing with the complications of non-
stationary behavior in the context of climate time series
smoothing. The method was motivated by previously de-
scribed ‘inverse theory’ based approaches to time series
smoothing [Park, 1992] which treat assumptions regarding
the unknown behavior of the time series outside the avail-
able interval as an additional constraint which must be
imposed to yield a unique smooth of the time series. The
three lowest-order possible such constraints are the so-
called ‘minimum norm’ constraint, which tends to minimize
the amplitude of the smooth near the boundaries, the

‘minimum slope’ constraint which tends to minimize the
slope of the smooth near the boundaries, and the ‘minimum
roughness’ constraint which seeks the smoothest behavior
near the time series boundaries by tending to minimize the
second derivative of the smooth near the boundaries. These
constraints can be implemented exactly using the frequency
domain approach described by Park [1992]. These con-
straints can also be implemented approximately as done by
Mann [2004] which simulates the three constraints using
simple procedures for padding the ends of the time series
(padding the time series with climatology approximates the
‘minimum norm’ constraint, reflecting the time series
horizontally about the final data point approximates the
‘minimum slope’ constraint, and reflecting the time series
horizontally and vertically about the final data point approx-
imates the ‘minimum roughness’ constraint). Mann [2004]
argues that the constraint among these three which opti-
mizes some objective metric of goodness-of-fit (e.g., which
minimizes the mean-square error (‘MSE’) with respect to
the raw time series), can be motivated as being the most
appropriate for the particular time series and time interval
being analyzed. In fact, this choice is a simplification of a
more general adaptive approach (e.g., as used by Mann and
Park [1996] in a multivariate setting, and Ghil et al. [2002]
for the univariate problem of time series smoothing) where
one instead selects as an objective choice that linear
combination of the three above constraints which minimizes
the MSE with respect to the raw time series.
[4] Often, much simpler boundary conditions are used. In

the most recent Intergovernmental Panel on Climate Change
(IPCC) assessment, for example, either a restricted version
of theMann [2004] time series smoothing approach wherein
the ‘minimum slope’ condition alone is employed [Trenberth
et al., 2007], or an alternative ‘mean padding’ approach
(where the series is padded with the mean over the final
N/2 values where N is the width (in # of samples) of the
smoothing window used [Jansen et al., 2007]) was used.
Trenberth et al. [2007] discuss the conservative nature of
their constraint choice, noting specifically that it is prone to
underestimate trends near the time series endpoints (this is
even more the case with the ‘mean padding’ approach used
by Jansen et al. [2007]). While the use of overly conserva-
tive approaches might be appropriate in the context of
assessment reports which require a consensus among a
large number of authors with differing views and prefer-
ences, we believe that the demonstrated performance of the
method should in general be the guiding consideration.
[5] Here we demonstrate that the approaches used in the

most recent IPCC assessment (the ‘minimum slope’ and
‘mean padding’ approaches) are indeed overly conservative,
tending to understate the amplitude of long-term trends by
artificially suppressing trends near the boundaries of the
time series. This finding is established both through appli-
cation of competing smoothing methods to interior intervals
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of the observational series for which both the estimated and
true smoothed behavior can be evaluated, and using simu-
lated global mean temperature series taken from the multi-
model suite of climate model simulations generated by the
CMIP3 model intercomparison project. Our analysis instead
motivates the use of an adaptive smoothing approach
presented below, which treats the selection of time series
smoothing boundary constraints as an empirical optimiza-
tion problem.

2. Methods

[6] We employ a generalized ‘adaptive’ version of the
method described by Mann [2004]. Rather than choosing a
single best constraint, the adaptive approach seeks an optimal
combination S0(t) of the three individual smooths Sj(t) of time
series T(t) that result from application each of the three
lowest-order (see section 1) boundary constraints viz.

S0 tð Þ ¼ w1S1 tð Þ þ w2S2 tð Þ þ w3S3 tð Þ ð1Þ

S1(t), S2(t) and S3(t) represent the minimum smooth, slope,
and roughness solutions respectively, and the coefficients wj

are chosen such that S [S0(t) � T(t)]2 is minimized, subject
to the constraints wj 2 [0, 1] and Swj = 1. The approach is
thus free to choose the limiting cases of ‘minimum norm’
(w1 = 1,w2 =w3 = 0), ‘minimum slope’ (w2 = 1, w1 =w3 = 0),
and ‘minimum roughness’ (w3 = 1, w1 = w2 = 0),
constraints, as well any mixture of those three constraints
[Mann and Park, 1996; Ghil et al., 2002]. As done byMann
[2004], we employ a ‘Matlab’ routine which uses a 10 point

‘‘Butterworth’’ lowpass filter of specified cutoff (half
power) frequency f0 for time series smoothing.
[7] The rough half-width of the smoothing window

associated with the filter is Dt = 1/f0. where f0 is the cutoff
(i.e., half-power drop-off) frequency. For example, if one
wishes to retain variability on multidecadal timescales
longer than 40 years using a filter with f0 = 0.025 cycles/
year, then Dt � 40 years and impacts of boundary
conditions can be expected to influence the behavior of
the smooth within Dt = 40 years (especially within Dt/2 =
20 years) of the time series boundaries. In practice, the
influence can penetrate somewhat farther into the interior of
the time series owing to the phenomenon of spectral
leakage. The length of the series padding used here to
implement boundary constraints has been increased from
Dt/2 (used by Mann [2004]) to 3Dt/2 to further guard
against time series end effects. For simplicity, the simpler
constraint procedure of Mann [2004] is used at the early end
of the time series, while the adaptive constraint is applied to
the late end whose behavior is of primary interest. The
routine and required sub-routines are available at: http://
www.meteo.psu.edu/�mann/smoothing08 (Matlab ‘signal’
toolbox required).
[8] Before proceeding,we used an example (the instrumental

global mean temperature series used in section 3.1 below,
smoothed on the multidecadal timescale f0 = 0.025 cycles/year)
to compare the Matlab smoothing procedure described
above with an alternative version of the procedure based
on multiple taper spectral analysis which implements the
three lowest order boundary conditions exactly, and which
employs a maximally spectral leakage-resistant filtering
technique [see Mann and Park, 1996; Ghil et al., 2002;
also Mann, 2004]. Both of these implementations of the
adaptive boundary constraint technique are found to yield
remarkably similar smooths of the time series (see Figure S1
of the auxiliary material).1 The Matlab smoothing proce-
dure, though not optimal in terms of its statistical properties,
thus gives results quite similar to more sophisticated and
precise approaches, and offers the advantage of being less
computationally cumbersome and easily adaptable (any
other arbitrary low-pass filter available in Matlab can be
substituted for the ‘Butterworth’ filter used in our routine).
In this sense, we present the Matlab smoothing procedure
more as a simple ‘proof of concept’ potentially to be
improved upon, than a prescriptive approach for time series
smoothing.

3. Applications

3.1. Instrumental Global Mean Surface Temperature
Record

[9] We analyzed the annual ‘HadCRUT3’ global annual
mean combined land + ocean instrumental surface temper-
ature series from 1850–2007 [Brohan et al., 2006] (avail-
able at http://www.cru.uea.ac.uk/cru/data/temperature). Both
our adaptive smoothing method (henceforth termed ‘adaptive’)
and the mandated use of the ‘minimum slope’ constraint
(henceforth termed ‘minslp’) suggest (Figure 1) a net
warming of roughly 0.88�C applied to the full series, while

Figure 1. Instrumental annual global mean surface
temperatures 1850–2007 smoothed on 40 year and longer
timescales based on the ‘adaptive’ (solid), ‘minslp’ (dashed)
and ‘mean padded’ (dot-dashed) approaches discussed in
the text. Results are shown for the full 1850–2007 interval
(black) and the various truncated intervals discussed in the
text ending at 1987 (purple), 1977 (blue), 1967 (cyan), 1957
(green), 1947 (gray), 1937 (red), and 1927 (auburn). Inset
focuses on late 20th century sub-interval.

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GL034716.
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the ‘mean padded’ approach (henceforth termed ‘mpad’)
suggests a slightly more modest 0.83�C warming. The
differences between the approaches are modest in this case,
largely because the ‘adaptive’ method essentially chooses
the pure ‘minslp’ constraint limit owing to the recent
flattening of warming. However, the differences are con-
siderably greater in other instances, as discussed below.
[10] In order to objectively evaluate the relative perfor-

mance of the two different approaches in capturing the true
smoothed behavior near the boundaries more generally, we
performed additional smoothing experiments where the data
interval was truncated at least Dt/2 = 20 years prior to the
2007 time series boundary (separate experiments were thus
performed with termination dates of 1987, 1977, 1967,
1957, 1947, 1937, and 1927). In such cases, the true
smoothed behavior of the time series at the termination
date is known, because that date is far enough into the
interior of the full series that its smooth at that point is
largely insensitive to the constraint on the upper boundary.
The relative skill of the different methods can then be
measured by the misfit between the estimated and true
smooths of the truncated series. We define this skill in
terms of the ratio of variances in the misfit between the
estimated and true smooth and the smooth itself (this is
expressed as a fraction or percentage and is denote by
‘‘e2’’). We removed the first Dt = 40 years from the error
calculations to eliminate any influence of the lower bound-
ary constraint on the smooth. Averaged over the 7 test
intervals described above, the ‘adaptive’ method (see
Table S1) yields an average relative misfit score of 1.0%
while the ‘minslp’ method yields a score of 4.9% and the
‘mpad’ approach a score of 6.0%, factors of roughly five
and six times greater relative error respectively. The ‘adap-
tive’ method out-performed the ‘minslp’ method for 6 of the
7 test intervals cases (the ‘minslp’ approach wins for the
interval ending in 1957) while it outperformed the ‘mpad’
approach slightly less often (4 of the 7 test intervals) but
typically more decisively. The optimal constraints selected
by the ‘adaptive’ method vary, of course, over time. For
example, a pure (or near pure) ‘minimum roughness’
constraint—consistent with assumption of a steady trend
extending through the end of the series—is selected for
terminal dates between 1999 and 2005 (see Figure S2),
noted for example in the previous analysis by Mann [2004].
By contrast a nearly pure ‘minimum slope’ constraint
(consistent with a persistence assumption) is selected for
terminal dates in the early 1960s when a flattening of the
warming trend is observed and, as noted above, for the most
recent 2007 terminal date. Unfortunately, the relative per-
formance of the different smoothing methods cannot be
evaluated for the present day because the true multidecadal
smoothed behavior cannot be defined through the present.
However, we can turn to model simulations as surrogates
for plausible 21st century global temperature scenarios, as
discussed in the next section.

3.2. CMIP3 Multimodel Global Mean Surface
Temperature Series

[11] We next analyzed the global mean temperature series
from a total of 55 individual realizations of 21 different
state-of-the-art model simulations from the World Climate
Research Programme’s (WCRP’s) Coupled Model Inter-

comparison Project phase 3 (CMIP3) (see http://www-
pcmdi.llnl.gov/ipcc/about_ipcc.php). For the purpose of
our analyses, we combined corresponding realizations of
the historical simulations (which were driven by historical
estimated natural and anthropogenic radiative forcings from
the late 19th through late 20th century) and the anthropo-
genic forced experiments from 2000–2100 resulting from
the intermediate ‘A1B’ anthropogenic emissions scenario.
These series were treated as 55 plausible surrogate 1850–
2100 global mean surface temperature series.
[12] We restricted the analyses to the interval from 1900

forward during which all simulations are available. The
‘true’ smooth is defined by smoothing the model series
through the late 21st century upper boundary (using the
‘adaptive’ smoothing method, but the series prior to the mid
21st century are insensitive to which boundary constraint is
used). We performed smoothing tests similar to those out-
lined in section 3.1, but instead using seven truncated
intervals with termination dates of: 1997, 2002, 2007,
2012, 2017, 2022 and 2027. These choices allow us to
evaluate the relative performance of the two different
smoothing methods under comparison for hypothetical
termination dates ranging from the past decade through
the next two decades.
[13] The ‘adaptive’ approach outperformed the ‘minslp’

approach for all but 75 of the 385 (55 models 	 7 time
intervals) cases considered (i.e., 81% of the time), similar to
the 6/7 (85%) ‘win’ rate found in section 3.1 for the
observed modern record. The mean error over all 385 cases
was 0.8% with the ‘adaptive’ smoothing approach, and
1.5% with the ‘minslp’ approach. The adaptive method
outperformed the ‘minslp’ method for each of the seven
time intervals considered, averaged across the 55 different
CMIP3 simulations (Table S2). The ratio of ‘minslp’ to
‘adaptive’ error variance ranged from 1.5 to 2.8, with the
median and means both equal to 2.2. For nearly all (47 of
55) of the CMIP3 simulations, the ‘adaptive’ method out-
performed the ‘minslp’ method averaged across the 7 time
intervals (Figure 2; full details provided in Table S3), with
the ratio of error variance ranging from 0.6 to 12.2 (median
of 1.6 and mean of 2.4).
[14] Similar tests using the ‘mpad’ approach yielded

even poorer performance than the ‘minslip’ approach (see
Tables S2 and S3). The ‘mpad’ smoothing method was
outperformed by the ‘adaptive’ method for 54 of the 55
simulations tested (Figure 2), with the error variance relative
to the ‘adaptive’ approach ranging from 0.94 to 17.2 for the
55 simulations with median and mean of 3.3 and 4.5
respectively.
[15] It is clear upon visual inspection that the ‘minslp’

and (especially) ‘mpad’ methods tend to significantly un-
derestimate the true trends near the time series upper
boundary, while the ‘adaptive’ method reproduces those
trends relatively faithfully. Specific examples (Figure 3) are
shown both for a case where the underperformance relative
to the ‘adaptive’ approach is quite large (simulation #34 in
Table S2: a simulation of the MIUB ECHO-G coupled
model) and a case where the underperformance is close to
the mean over the ensemble of 55 models (simulation #10 in
Table S2: a simulation of the CSIRO MK3.5 coupled
model). In both cases, it is noteworthy that the ‘minslp’
(‘mpad’) methods typically underestimate the true long-
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term trends by as much as 0.1�C (0.2�C). These are not
trivial underestimates, given that the net 20th century
warming is less than 1�C. The ‘adaptive’ method by
contrast yields either little or no systematic underestimate
of trend.
[16] Additional experiments using a decadal smoothing

filter similar to that used by Trenberth et al. [2007] (cutoff
frequency of f0 = 0.0625 corresponding to 16 year period)
yielded considerably more modest differences, with the
mean and median error variance inflation relative to the
‘adaptive’ method considerably smaller for both the ‘minslp’
(mean of 1.7, median of 1.2) and ‘mean padding’ (mean of
1.7, median of 1.02) averaged across the 55 simulations. We
conclude that the performance issues examined in this study
are of primary relevance to comparisons of series smoothed
on multidecadal [e.g., Jansen et al., 2007; Folland et al.,
2001] rather than decadal [e.g., Trenberth et al., 2007;
Rahmstorf et al., 2007] timescales.

4. Conclusions

[17] Our analyses indicate that some commonly used
approaches for climate time series smoothing are likely to
underestimate the amplitude of long-term changes due to

artificial suppression of trends near the time series bound-
aries. Methods such as the adaptive boundary constraint
approach presented here, which have the ability to preserve
trends near time series boundaries, should instead be used.
This is particularly true where non-stationary behavior, such
as is associated with the response to anthropogenic forcing,
is likely to be important.

[18] Acknowledgments. We acknowledge the modeling groups, the
Program for Climate Model Diagnosis and Intercomparison (PCMDI) and
the WCRP’s Working Group on Coupled Modeling (WGCM) for their roles
in making available the WCRP CMIP3 multi-model dataset. Support of this
dataset is provided by the Office of Science, U.S. Department of Energy.
This paper benefited from helpful comments from Gavin Schmidt, Stefan

Figure 3. Global mean surface temperatures 1900–2027
for (a) MIUB ECHO-G (run #3) coupled model simulation
and (b) CSIRO MK 3.5 (run #1) coupled model simulation,
smoothed on 40 year and longer timescales based on the
‘adaptive’ (solid curves), ‘minimum slope’ (dashed) and
‘mean-padded’ (dot-dashed) approaches discussed in the
text. Results are shown for smooths based on the full
available interval ending at 2100 (black) and on the various
truncated intervals discussed in the text ending at 2027
(purple), 2022 (blue), 2017 (cyan), 2012 (green), 2007
(gray), 2002 (red), and 1997 (auburn). Inset focuses on early
21st century sub-interval.

Figure 2. Distribution of the ratio of error variance of the
(a) ‘minimum slope’ and (b) ‘mean padding’ smoothing
approaches relative to the favored ‘adaptive’ smoothing
approach for the 55 different CMIP3 simulations, averaged
across the seven test intervals described in the text.

L16708 MANN: SMOOTHING OF CLIMATE TIME SERIES L16708

4 of 5



Rahmstorf, Kevin Trenberth and an anonymous reviewer. We gratefully
acknowledge technical assistance from Sonya Miller.

References
Arguez, A., P. Yu, and J. J. O’Brien (2008), A new method for time series
filtering near endpoints, J. Atmos. Oceanic Technol., 25, 534–546.

Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones (2006),
Uncertainty estimates in regional and global observed temperature
changes: A new data set from 1850, J. Geophys. Res., 111, D12106,
doi:10.1029/2005JD006548.

Folland, C. K., T. R. Karl, J. R. Christy, R. A. Clarke, G. V. Gruza, J. Jouzel,
M. E. Mann, J. Oerlemans, M. J. Salinger, and S.-W. Wang (2001),
Observed climate variability and change, in Climate Change 2001: The
Scientific Basis, edited by J. T. Houghton et al., pp. 99–181, Cambridge
Univ. Press, New York.

Ghil, M., et al. (2002), Advanced spectral methods for climatic time series,
Rev. Geophys., 40(1), 1003, doi:10.1029/2000RG000092.

Jansen, E., et al. (2007), Palaeoclimate, in Climate Change 2007: The Phy-
sical Science Basis. Contribution of Working Group I to the Fourth Assess-
ment Report of the Intergovernmental Panel on Climate Change, edited by
S. Solomon et al., pp. 433–497, Cambridge Univ. Press, Cambridge, U. K.

Mann, M. E. (2004), On smoothing potentially non-stationary climate time
series, Geophys. Res. Lett., 31, L07214, doi:10.1029/2004GL019569.

Mann, M. E., and J. Park (1996), Joint spatio-temporal modes of surface
temperature and sea level pressure variability in the northern hemisphere
during the last century, J. Clim., 9, 2137–2162.

Park, J. (1992), Envelope estimation for quasi-periodic geophysical signals
in noise: A multitaper approach, in Statistics in the Environmental and
Earth Sciences, edited by A. T. Walden and P. Guttorp, pp. 189–219,
Edward Arnold, London.

Rahmstorf, S., A. Cazenave, J. A. Church, J. E. Hansen, R. F. Keeling, D. E.
Parker, and R. C. J. Somerville (2007), Recent climate observations
compared to projections, Science, 316, 709.

Trenberth, K. E., et al. (2007), Observations: Surface and atmospheric
climate change, in Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by S. Solomon et
al., pp. 235–336, Cambridge Univ. Press, Cambridge, U. K.

�����������������������
M. E. Mann, Department of Meteorology, Pennsylvania State University,

University Park, PA 16802, USA. (mann@psu.edu)

L16708 MANN: SMOOTHING OF CLIMATE TIME SERIES L16708

5 of 5


