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ABSTRACT:

Results are presented from a set of experiments designed to investigate factors that may

influence proxy-based reconstructions of large-scale temperature patterns in past

centuries.  The factors investigated include (1) the method used to assimilate proxy data

into a climate reconstruction, (2) the proxy data network used, (3) the target season, and

(4) the spatial domain of the reconstruction.  Estimates of hemispheric-mean temperature

are formed through spatial averaging of reconstructed temperature patterns that are based

on either the local calibration of proxy and instrumental data or a more elaborate

multivariate climate field reconstruction approach.  The experiments compare results

based on the global multi-proxy data set used by Mann and co-workers, with results

obtained using the extratropical Northern Hemisphere (NH) maximum latewood tree-ring

density set used by Briffa and co-workers.  Mean temperature reconstructions are

compared for the full NH (tropics and extratropics, land and ocean), and extratropical

continents only, with varying target season (cold-season half year, warm-season half

year, and annual mean).  The comparisons demonstrate dependence of reconstructions on

seasonal, spatial, and methodological considerations, emphasizing the primary

importance of the target region and seasonal window of the reconstruction.  The

comparisons support the generally robust nature of several, previously published,

estimates of NH mean temperature changes in past centuries, and suggest that further

improvements in reconstructive skill are most likely to arise from an emphasis on the

quality, rather than quantity, of available proxy data.

 1. Introduction:
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Evidence of how climate has changed in past centuries can inform our assessment

of the anthropogenic role in observed 20th century warming (e.g. Folland et al., 2001).

The lack of widespread instrumental surface temperature estimates prior to the mid 19th

century (e.g. Jones et al., 1999) places particular emphasis on the need to reconstruct the

history of climate changes accurately, which can only be achieved via the careful use of

long-term empirical evidence.  Such empirical evidence comes from “proxies” of climate

variability derived from the environment itself and from documentary evidence (Le Roy

Ladurie, 1971; Wigley et al., 1981; Crowley and North, 1991; Bradley and Jones, 1995;

Bradley, 1999, Jones et al., 2001a).

Particularly useful in this context are high-resolution (annually or seasonally-

resolved) proxies such as tree rings (e.g. Fritts et al., 1971; Fritts, 1991; Briffa et al.,

1994;1998ab;2001), corals (e.g. Evans et al., 2002; Hendy et al., 2002), ice cores

(O'Brien et al., 1995; Appenzeller et al., 1998; Meeker and Mayewski, 2002), lake

sediments (Hughen et al., 2000), and long documentary and instrumental series (Pfister et

al., 1998; Luterbacher et al., 1999), all of which may be combined into “multi-proxy”

assemblages (Bradley and Jones, 1993; Overpeck et al., 1997; Mann 2002ab; Mann et al.,

1998; Crowley and Lowery, 2000; Folland et al., 2001; Jones et al., 1998, 2001a; Cook et

al., 2002; Luterbacher et al., 2002).  A critical advantage of using such high-resolution

proxy data is the possibility of comparing the proxies against long temporally-

overlapping instrumental records both to estimate the climate signal in the data

(calibration) and independently test the reliability of the signal (verification or cross-

validation).

Annually-resolved proxy indicators have been used to reconstruct spatial climate
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fields such as sea level pressure (SLP) (Fritts, 1991; Luterbacher et al., 2002; Meeker and

Mayewski, 2002), terrestrial surface air temperature (SAT) (Briffa et al., 1994;1998a;

2002b), continental drought (Cook et al., 1999), sea surface temperature (SST) (Evans et

al, 2002) and the combined global SAT/SST temperature field (Mann et al., 1998;1999).

These reconstructed fields have been spatially-averaged to yield estimates of hemispheric

mean temperature (e.g. Osborn et al., 2004; Mann et al., 1998;1999) or circulation/SST

indices such as the Niño3 index of El Niño/Southern Oscillation (ENSO) (Mann et al.,

2000a,b) and the North Atlantic Oscillation (NAO, Luterbacher et al., 2001, 2002; Cook,

2002).  Unlike hemispheric mean reconstructions, spatial field reconstructions retain vital

information which can provide insight into the mechanisms or forcing underlying

observed variability (e.g. Briffa et al., 1994, 2002a,b; Cook et al., 1997; Delworth and

Mann, 2000; Shindell et al., 2001; Waple et al., 2002; Braganza et al., 2002).

Annually-resolved proxy networks have also been used to directly reconstruct

indices of climate variability such as the North Atlantic Oscillation (NAO) (D'Arrigo et

al., 1993; Appenzeller et al., 1998; Cullen et al., 2001; Mann, 2002b; Cook et al., 2002),

the Pacific Decadal Oscillation (PDO) (Biondi et al., 2001; Gedalof et al., 2002), ENSO

[including the Niño3 (Mann et al., 2000a,b) and Southern Oscillation (Stahle et al., 1998)

indices], and hemispheric mean temperature series (Jacoby and D'Arrigo, 1989; Bradley

and Jones, 1993; Overpeck et al., 1997; Jones et al., 1998; Briffa et al., 1998a; 2001;

2002a; Crowley and Lowery, 2000; Mann and Jones, 2003).  Such approaches are

potentially limited by the assumed relationship between local variables recorded by the

proxies (temperature and precipitation) and larger-scale climate patterns, since the

relationship between local and large-scale influences may change over time (e.g. Jones et
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al., 2003b).

Of particular interest in this study are various recent reconstructions of NH

temperature from proxy data networks (Bradley and Jones, 1993; Overpeck et al., 1997;

Briffa et al., 1998a,b;2001; Jones et al., 1998; Mann et al., 1998;1999; Mann, 2002a;

Crowley and Lowery, 2000).  Most reconstructions show notable overall similarity

(Mann, 2000; 2001; 2002a; Briffa and Osborn, 2002; Jones et al., 1998, 2001a; Folland et

al., 2001; Mann and Jones, 2003; Mann et al., 2003a,b).  For example, the late 20th

century warmth is unprecedented in the context of the past 1000 years in all

reconstructions given the published estimates of uncertainty in the reconstructions (e.g.

Folland et al., 2001; Jones et al., 2001a; Mann et al., 2003b; Cook et al., 2004).  In

addition, the empirical reconstructions generally show considerable similarity to

independent climate model simulations (Free and Robock, 1999; Crowley, 2000; Shindell

et al., 2001; Gerber et al., 2003; Bertrand et al., 2002; Bauer et al., 2003), with isolated

exceptions (Gonzalez-Rouco et al., 2003).

Some differences do exist, however, among hemispheric temperature

reconstructions, with certain reconstructions (e.g. Esper et al., 2002) indicating greater

peak cooling in past centuries than others (see also Briffa and Osborn, 2002; Mann and

Hughes, 2002; Mann, 2002a; Mann et al., 2003b).  It is important to try to understand the

sources of the differences between the various NH temperature reconstructions.  This

undertaking is complicated by the fact that several distinct factors in varying

combinations could be responsible for the differences between reconstructions.  One

factor (1) is the method employed to assimilate the information from proxy data networks

into a reconstruction of past climate.  The simplest method is to construct an unweighted
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average of a set of “standardized” proxy series believed to represent a particular quantity

(e.g. temperature, or an index of ENSO).  The single composite series can then be scaled

against an appropriate target index.  For example, a composite of proxy indicators known

(or assumed, or shown by correlation) to reflect local surface temperatures can be scaled

against the instrumental northern hemispheric mean temperature record during the period

that proxy and instrumental data overlap.  The scaled series is then interpreted as an NH

mean temperature reconstruction based on the proxy data (e.g. Bradley and Jones, 1993;

Jones et al., 1998; Crowley and Lowery, 2000; Mann and Jones, 2003).  Similarly, one

can composite indicators believed to be sensitive to ENSO and scale the composite to the

instrumental SOI index to yield an SOI reconstruction (Stahle et al., 1998).

Alternatively, a large number of local or regional regressions between proxy indicators

and instrumental data can be used to build up a reconstruction of an entire field.  Such

“local calibration” approaches assume a local relationship between predictor (e.g.

maximum tree-ring latewood density) and climate variable (e.g. summer surface air

temperature) (e.g. Briffa et al., 1998a; 2001;2002a,b).

A more elaborate approach is to use a Climate Field Reconstruction (CFR)

technique (see Smith et al., 1996; Kaplan et al., 1997; Schneider, 2001; Mann and

Rutherford, 2002; Rutherford et al., 2003) to reconstruct a large-scale field from a proxy

data network through multivariate calibration of the large-scale information in the proxy

data network against instrumental data (see also Fritts et al., 1971; Guiot, 1985;1988;

Fritts, 1991; Cook et al., 1994; Mann et al., 1998; 1999; 2000a,b; Mann and Rutherford,

2002; Luterbacher et al., 2002a,b; Evans et al., 2002; Pauling et al., 2003).  The CFR

approach does not assume any a priori local relationship between proxy indicator and the
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climatic field being reconstructed.  For example, a proxy sensitive to convection/rainfall

in the central tropical Pacific (indicative of ENSO variability) can be used to calibrate the

surface temperature patterns associated with ENSO even though the proxy itself is not

related to local temperature.  In this manner, a large-scale climate field can often be

efficiently reconstructed through CFR techniques from a relatively modest network of

indicators (e.g. Bradley, 1996; Evans et al., 1998, Mann and Rutherford, 2002; Zorita et

al., 2003).  Such methods arguably depend more heavily on assumptions about the

stationarity of relationships between proxy indicators and large-scale patterns of climate

variability than the “local calibration” approach.  Model experiments suggest this

probably is not problematic for the range of variability inferred for recent past centuries

(Rutherford et al., 2003).  Reconstructions of the more distant past (e.g. the mid-

Holocene—Bush, 1999; Clement et al., 2000) would require, however, a more careful

consideration of stationarity issues.

A second complicating factor (2) in comparing different reconstructions involves

the potentially different character of the proxy network used to produce the

reconstruction.  Some proxy networks consist of only one specific type of proxy

information (e.g. tree-ring maximum latewood density measurements—Briffa et al.,

1998a,b;2001), while other “multiproxy” networks combine several types of proxy

information (tree ring width and density measurements, indicators derived from corals,

ice cores, lake sediments, and historical documentary records—Mann et al.,

1998;1999;2000a,b).  Proxy networks can differ in their sensitivity to specific

meteorological variables.  Extratropical high-latitude tree-ring networks typically provide

warm-season temperature information, while tree-ring information from lower-latitude
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semi-arid/Mediterranean or tropical environments, corals, ice cores, and documentary

records provide variable seasonal information regarding distinct climate variables.  In

addition, proxy networks often differ dramatically in the number of proxies used, ranging

from a handful of very long proxies (Jones et al., 1998; Crowley and Lowery, 2000;

Esper et al., 2002) to a potentially much larger (hundreds—e.g., Mann et al., 1998;1999;

Briffa et al., 1998a,b;1999;2001) but temporally-variable set of proxies.  The sampling

error in hemispheric estimates based on the latter is likely to be smaller than that in the

former, but errors will increase back in time leading to expanding uncertainties in earlier

periods (e.g. Mann et al., 1999; Jones et al., 2001a).

An additional factor (3) is the target season of the reconstruction (annual mean,

boreal warm season or boreal cold season), as discussed by Briffa and Osborn (2002) and

Jones et al. (2003a).  The target season is, to some extent, constrained by the particular

proxies used.  However, it is not always possible to know the precise mix of seasonal

information in the proxy network a priori.  This is particularly true in large-scale CFR

where a precipitation-sensitive proxy may, for example, be an important predictor of a

large-scale temperature pattern, as discussed above.  In this case, the optimal target

seasonal window can nonetheless be evaluated through calibration and cross-validation

exercises (e.g. Mann et al., 2000b).

A final related factor (4) is the target region of the reconstruction.  Tropical SSTs

are, for example, typically less variable than extratropical, continental surface air

temperatures, so a reconstruction targeting the entire NH (land and ocean, tropics and

extratropics—e.g. Jones et al., 1998; Mann et al., 1999; Crowley and Lowery, 2000;

Mann and Jones, 2003) is likely to yield smaller amplitude variability than one targeting
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extratropical continental regions only (e.g. Briffa et al., 1998a,b; 2001; Esper et al.,

2002).

One approach used to compare reconstructions based on proxy data with different

seasonal or regional emphases is to rescale the reconstruction against an appropriate

target index.  For example, a reconstruction based on extratropical land-only proxies

might still be rescaled to the full NH instrumental mean series, or a reconstruction based

on annual proxies might still be scaled to a warm-season instrumental hemispheric mean

series (Briffa and Osborn, 2002).  However, there are some pitfalls to this approach.  Any

similarity between patterns of temperature change in different seasons and regions over

the instrumental record may be relatively unique to the late 19th and 20th century.

Seasonal temperature trends show greater differences in prior centuries (see e.g. Jones et

al., 2003a; Luterbacher et al., 2004), and pre-anthropogenic, natural forcing appears to

have a different spatial and seasonal temperature signature from anthropogenic forcing

(Shindell et al., 2003).  Moreover, although tropical and extratropical temperature trends

are similar during the instrumental period, there is some evidence that they may have

been quite different in past centuries (Hendy et al., 2002; Cobb et al., 2003).  More

sophisticated approaches to dealing with differing seasonal and spatial emphases are thus

preferable.

The intent of this study is to provide a systematic assessment of the relative

impacts of these four factors on published large-scale surface temperature

reconstructions.  We do this based on the use of two different reconstruction techniques:

(a) local calibration, and (b) large-scale CFR.  We analyze two nearly independent

networks of predictors, one that is globally extensive (land and ocean, tropical and
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extratropical), represents various seasons, and consists of multiple proxy types

(“multiproxy”—Mann et al., 1998), and another which is extratropical and terrestrial, is

reflective primarily of warm-season conditions, and based entirely on Maximum

Latewood Tree-Ring density (“MXD”-Briffa et al., 1998a,b, 2001, 2002a,b).  For each of

the two proxy networks, reconstructions are performed for three different target seasons

(annual mean, boreal cold-season and boreal warm-season), and the resulting NH mean

temperature reconstructions are compared based on averages over distinct spatial

domains (full NH land and ocean, extratropical land regions only).  Additional insights

are obtained from comparisons with other published NH temperature reconstructions

(Mann et al., 1998;1999; Briffa et al., 1998a,b;2001; Osborn et al., 2004; Esper et al.,

2002).

2. Data

A. Instrumental Surface Temperature Data

We use the 5° latitude by 5° longitude Climatic Research Unit (CRU) grid-box

surface temperature dataset available from 1856-present to calibrate and reconstruct the

surface temperature field from proxy data networks (Note: The surface temperature data

are available at http://fox.rwu.edu/~rutherfo/supplements/jclim2003a).  The data consist

of surface air temperature (SAT) over land and sea surface temperature (SST) over the

oceans (Jones et al., 1999, 2001b; Jones and Moberg, 2003).  We use the HadCRUT

dataset (Jones et al., 2001b) rather than the more recently published HadCRUT2 (Jones

and Moberg, 2003) version.  We use the restricted period 1856-1971 for calibration as

discussed below, but consider the resulting reconstructions in the context of the entire

record (1856-1998).  This instrumental surface temperature dataset exhibits some
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differences from the older instrumental surface temperature dataset (Jones et al., 1994)

used by Mann et al. (1998).

We averaged the monthly mean data into annual (calendar), boreal warm (April to

September) and cold (October to March) seasonal averages, the target seasons for

subsequent reconstructions.  In the case of cold-season averages, our convention is to

designate the year as corresponding to the early (October-December) rather than late

(Jan-Mar) half of the 6 month interval.  For example, the 1815 cold season is October

1815 through March 1816.  The averaged (and raw) data are both temporally and

spatially incomplete due to a lack of available data at a given location and time.  In

particular, the data coverage during the 19th Century is relatively sparse compared to that

of the latter half of the 20th Century.  To produce a complete instrumental field we infilled

the missing instrumental values for seasonal and annual mean values using the RegEM

method as described by Schneider (2001) [see also Mann and Rutherford, 2002;

Rutherford et al., 2003; Zhang et al., 2004].  Only the Northern Hemisphere data (grid

centers at 2.5°N through 67.5°N: the instrumental data are extremely sparse poleward of

67.5°N) were used in this study.  Spatial means, including the NH mean, are constructed

from areally-weighted averages of the grid box data.  The correlation between the time

series of the NH mean based on available data only and the RegEM infilled field is

r=0.98 (over the 1856-1971 period).

B. Proxy Data

We used two largely independent predictor networks to assess the sensitivity of

the temperature reconstructions to the network used.  The first of these is a "multiproxy"

dataset used by Mann and co-workers (Mann et al. 1998, 1999, 2000a,b; Mann 2002b) to
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reconstruct global patterns of annual mean surface temperature (SAT over land and SST

over ocean) in past centuries.  The second data set consists entirely of tree-ring maximum

latewood density (“MXD”) data used by Briffa and coworkers (Briffa et al., 1998a,b,

2001, 2002a,b, Osborn et al., 2004) to reconstruct extratropical terrestrial warm-season

SAT.  Strictly speaking, the two networks are not entirely independent, because they

share a small number of tree-ring density series (19, or, 4.6% of the 415 series used by

Mann et al. (1998) and 6% of the 387 series contributing to the MXD network, are

common to both networks).  In addition, many of the ring-width series from Russia used

by Mann et al. (1998) were from sites for which density data were used by Briffa and

coworkers.  We also prepared a third “combined” network by combining both networks.

i. Multiproxy/PC dataset

The multiproxy/PC network (Mann et al., 1998) is a combination of annually-

resolved proxy indicators including tree ring chronologies (ring width and density), ice

cores (stable isotope, ice melt and ice accumulation data), coral records (stable isotope

and fluorescence data) and long historical and instrumental records (temperature and

precipitation) from the tropics and extratropics of both hemispheres.  (The data in the

multiproxy/PC network are available at

http://fox.rwu.edu/~rutherfo/supplements/jclim2003a.) The individual proxies in the

network were chosen not for their reliability as local indicators of temperature, but for

their potential relationship with some seasonal meteorological or climatic variable tied to

larger-scale patterns of climate, and surface temperature, change.  In areas with spatially

dense tree-ring networks, principal components analysis was used to extract the leading

principal components (PCs) from the network.  Although 415 individual proxy series
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were used, data reduction by using leading PCs of tree-ring networks results in a smaller

set of 112 indicators in the Multiproxy/PC network available back to 1820 (Figure 1a),

with a decreasing number of indicators available progressively farther back in time.

Twenty two of the indicators (representing 95 individual proxy series) extend back to at

least AD 1400.  Many of the indicators in the network end at or near 1980, motivating a

termination of the calibration interval at 1980 by Mann et al. (1998), with a modest

subset of series terminating between 1971 and 1980 infilled by persistence of the final

available value through to 1980.  We terminate the calibration period at 1971 in this study

to avoid any possible influence of the infilling process used by Mann et al. (1998).

It should be noted that some reported putative “errors” in the Mann et al. (1998)

proxy data claimed by McIntyre and McKitrick (2003) are an artifact of (a) the use by

these latter authors of an incorrect version of the Mann et al. (1998) proxy indicator

dataset, and (b) their apparent misunderstanding of the methodology used by Mann et al.

(1998) to calculate PC series of proxy networks over progressively longer time intervals.

In the Mann et al. (1998) implementation, the PCs are computed over different time steps

so that the maximum amount of data can be used in the reconstruction.  For example, if a

tree-ring network comprises 50 individual chronologies that extend back to AD 1600 and

only 10 of those 50 extend to AD 1400 then calculating one set of PCs from 1400 to 1980

(the end of the Mann et al. (1998) calibration period) would require the elimination of 40

of the 50 chronologies available back to AD 1600.  By calculating PCs for two different

intervals in this example (1400-1980 and 1600-1980) and performing the reconstruction

in a stepwise fashion, PCs of all 50 series that extend back to AD 1600 can be used in the

reconstruction back to AD 1600 with PCs of the remaining 10 chronologies used to
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reconstruct the period from 1400-1600.  The latter misunderstanding apparently led

McIntyre and McKitrick (2003) to eliminate roughly 70% of the proxy data used by

Mann et al. (1998) prior to AD 1600 (McIntyre and McKitrick, 2003; Table 7), including

77 of the 95 proxy series used by Mann et al. (1998) prior to AD 1500. This elimination

of data gave rise to spurious warmth during the 15th century in their reconstruction,

sharply at odds with virtually all other empirical and model-based estimates of

hemispheric temperature trends in past centuries (see e.g. Jones and Mann, 2004).

ii. Maximum Latewood Density (MXD) Dataset

The MXD network (Briffa et al., 2001; 2002a,b) is primarily a reflection of

growing (warm-season) conditions, though some limited cold-season information is also

apparent in the data (Briffa et al., 2002a).  The version of the MXD dataset used here was

compiled using a combination of grid-box estimates based on traditionally-standardized

MXD records (with limited low-frequency information) and regional estimates developed

to retain low-frequency information (Osborn et al., 2004) (The data in the MXD network

are available at http://fox.rwu.edu/~rutherfo/supplements/jclim2003a.).  The latter were

developed using the Age-Band Decomposition (ABD) method of standardization,

wherein density data from trees of similar ages are averaged to create long chronologies

with minimal effect of tree age and size (Briffa et al., 2001).  The ABD method is

designed to preserve low frequency information in tree ring data that may be reduced

when more traditional methods to remove long-term growth trends are used (see Cook et

al., 1995).  Because the age-banding method requires large numbers of samples

throughout the time period being studied, it has been applied only at a regional scale for

the MXD network used here, rather than at the level of the 387 original site chronologies.

Osborn et al. (2004) therefore worked first with the traditionally-standardized data at the
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individual chronology scale, gridded them to provide values in 115 5° by 5° grid boxes

(26 available back to AD 1400) in the extratropical NH (Figure 1b).  They then

developed temperature reconstructions by the local calibration of the MXD grid box data

against the corresponding instrumental grid box temperatures.  The “missing” low-

frequency temperature variability was then identified as the difference between the 30-

year smoothed regional reconstructions of Briffa et al. (2001) and the corresponding 30-

year smoothed regional averages of the gridded reconstructions.  Osborn et al. (2004) add

this “missing” low frequency variability to each grid box in a region.  After roughly

1960, the trends in the MXD data deviate from those of the co-located instrumental grid-

box SAT data for reasons that are not yet understood (Briffa et al., 1998b; 2003; Vaganov

et al., 1999).  To circumvent this complication, we use only the pre-1960 instrumental

record for calibration/cross-validation of this dataset in the CFR experiments.

3. CFR Reconstruction Method

A. RegEM Approach

Various mathematical techniques have been applied to the problem of CFR from

sparse data (Smith et al., 1996; Kaplan et al., 1997; Schneider 2001), including

applications to paleoclimate field reconstruction (Cook et al., 1994; Mann et al., 1998;

Luterbacher et al., 2002a,b; Evans et al., 2002).  Here we use the Regularized Expectation

Maximization (RegEM) method described by Schneider (2001), which offers several

theoretical advantages over other methods of CFR.  (Matlab scripts are available at

http://fox.rwu.edu/~rutherfo/supplements/jclim2003a.)  The RegEM method is an

iterative method for estimating missing data through the estimation of means and
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covariances from an incomplete data field to impute missing values in a manner that

makes optimal use of the spatial and temporal information in the dataset.  When a

reconstruction is sought from proxy data based on calibration against modern

instrumental measurements, the combined (proxy-plus-instrumental dataset) can be

viewed as an incomplete data matrix, which contains both instrumental data (surface

temperature grid-box values arranged with rows representing the years and columns

representing grid boxes) and proxy data (proxy time series with rows representing the

years and columns representing the proxy used).  The columns of the matrix (i.e., the

instrumental grid point data and proxy indicators) are standardized to have zero mean and

unit standard deviation over the calibration interval.

Missing values in this matrix represent the unknown pre-instrumental surface

temperature values, and are considered as values to be imputed through an iterative

infilling of the data matrix making use of the covariance information between all

available (instrumental and proxy) data.  By analogy with conventional paleoclimate

reconstruction approaches (see e.g. Rutherford and Mann, 2003), a calibration interval

can be defined as the time interval over which the proxy and instrumental data overlap,

while a verification interval is defined by additional cross-validation experiments in

which an appropriate subset of the available instrumental data are withheld from the

calibration process (e.g., through their specification as missing values in the initial

matrix).  Schneider (2001) provides a detailed description of the RegEM algorithm,

including a comparison with conventional methods such as principal components

regression, and application to the infilling of missing values in climate field data, while

Rutherford et al. (2003), Mann and Rutherford (2002), and Zhang et al. (2004) discuss
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specific applications to paleoclimate reconstruction.  The RegEM method has been

shown to perform well even in the presence of non-stationary climate forcing, as long as

the leading patterns underlying low-frequency variability are captured in calibration

(Rutherford et al., 2003).

We have modified the application of the method in two ways to improve its

performance for long-term CFR.  This includes first, implementing a stepwise approach,

where we reconstruct the field back in time in discrete steps to accommodate changing

availability of data and second, incorporating a hybrid frequency domain approach where

both the proxies and the instrumental calibration data are decomposed into two frequency

bands prior to reconstruction.  These modifications are discussed below.

B. Stepwise Modification of RegEM

The RegEM approach was in all cases applied in a stepwise fashion to make

increasingly better use of low-frequency information in the calibration process back in

time.  The reconstruction is performed one step at a time, using all available climate field

information (both instrumental field and proxy-reconstructed extension thereof) in the

calibration process for the reconstruction of each subsequent step back in time.  For

example, in the first reconstruction step the (infilled) instrumental data are available from

1856 to 1971 and the proxies extend back to AD 1400.  This leaves 455 years in which

the entire 1008 NH grid boxes (2.5°N to 67.5°N at 5° centers) are “missing”.  Rather than

reconstruct all 455 years at one step, we first reconstruct 1800-1855, producing a

complete NH field (1008) grid boxes from 1800 to 1971.  We then use the completed

1800-1971 data as input into the next step with the proxies extending back to 1700.  In

this step the interval 1700-1799 is reconstructed.  The process continues until the
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reconstruction is complete back to the targeted beginning date (in this case, AD 1400).  In

the case of the Multiproxy/PC and combined networks, the step lengths are constrained

by the network because the PCs of the dense tree-ring networks are recalculated over

discrete time intervals.  Thus the Multiproxy/PC and combined networks requires some

type of stepwise approach with step lengths dictated by the calculation of the PCs.  For

consistency with the Mann et al. (1998) approach we use the same step lengths here for

both the Multiproxy/PC and Combined networks.  The MXD network has no such

constraints and we chose a step length of 100 years, but the results are insensitive to the

exact step length chosen.

Due to the shortness of the instrumental record, one can not gauge the relative

performance of the stepwise vs. non-stepwise approaches through cross-validation

experiments using the actual instrumental record.  Instead, we used a network of

synthetic proxy data (“pseudoproxy”) data derived from long control and forced

integrations of the Geophysical Fluid Dynamics Laboratory’s R30 coupled ocean-

atmosphere model (Knutson et al., 2000) to test the relative performance of the two

methods.  We used the approach described by Mann and Rutherford (2002) to derive

networks of synthetic proxy data from the model surface temperature field.  In these tests

450 years of the control run were combined with 150 years of the forced run to create a

continuous and complete temperature field qualitatively similar in character to

reconstructed temperature histories over the past six centuries.  We constructed 112

pseudo-proxies (the same number as is in the multiproxy/PC indicator network back to

1820), from the modeled temperature field, and selected an increasingly sparse subset of

the 112 indicators back in time to emulate the decrease in the size of the actual proxy
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networks back in time.  The final 150 years were used for calibration to reconstruct the

preceding 450 years using only the information available in the pseudo-proxy network.

The stepwise approach performed as well as or better than the non-stepwise approach in

cross-validation in each of these experiments.  The results of these pseudoproxy

experiments give us some confidence that the primary conclusions presented in this study

are insensitive to whether the stepwise or non-stepwise approach is used.

C. Hybrid Frequency-Domain Modification of RegEM

We modified the RegEM method (Schneider, 2001; Mann and Rutherford, 2002;

Rutherford et al., 2003) to employ a hybrid frequency-domain calibration approach, in

which the combined proxy/instrumental data set is split into two distinct data sets,

through application of a lowpass filter to the data.  The lowpass component of the data

defines the low-frequency component, while the residual defines the high-frequency

component.  The frequency-split boundary can be varied arbitrarily, but reasonable

constraints on the appropriate choice are, at the high-frequency end, the Nyquist

frequency (f=0.5 cycle/yr for annual or seasonal mean data) divided by two or so (i.e.,

f=0.25 cycle/yr) and, at the low-frequency end, the Rayleigh frequency (f=0.01 cycle/yr

for e.g. 100 years of data) multiplied by two or so (i.e., f=0.02 cycle/yr).  This

corresponds to a high-frequency/low-frequency band split at periods between 4 years, and

50 years for a 100 year interval.  As described below, cross-validation experiments

motivate the choice f=0.05 cycle/yr (20 year period) for the split frequency in almost all

cases.

There are two primary motivations for the hybrid frequency-domain approach.

Different types of proxy data exhibit fundamentally different frequency-domain fidelity
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characteristics (Jones et al., 1998). Conventionally standardized tree-ring data, if based

on short constituent segments are unlikely to resolve century or longer timescale

variability (e.g. Cook et al., 1995), while very conservatively standardized tree-ring data

based on long constituent segments may resolve century-scale and longer variability

(Briffa et al., 1996; Cook et al., 1995).  Other proxy indicators, such as annually-

laminated lake sediments or ice core variables subject to diffusion (Fisher et al., 1996),

may preferentially resolve decadal and lower-frequency variability (e.g. Bradley, 1999).

Furthermore, some proxies may themselves exhibit different climate responses at low and

high frequencies (e.g. LaMarche, 1974; Osborn and Briffa, 2000; Hughes and

Funkhouser, 2003).  The underlying patterns of climate variability may also exhibit

timescale dependence.  Interannual timescale variability may be dominated by processes

such as ENSO and the NAO, while lower-frequency variability may be dominated by

modes involving the overturning ocean circulation (e.g. Delworth and Mann, 2000) or the

response to global radiative forcing (e.g. Crowley, 2000).  Distinguishing between

patterns of high- and low-frequency variability may thus provide a more efficient means

of calibration of the large-scale patterns of climate variability, and permit the use of a

wider range of natural archives.

Our hybrid frequency-domain calibration approach involves the use of two

distinct frequency bands in the calibration process.  In the limit of an increasingly large

number of distinct frequency bands, this approach would become analogous to the

spectral canonical regression approach described by Guiot (1985), in which the

calibration process is performed explicitly in the frequency domain rather than the time

domain.  In such a case, however, the small number of statistical degrees of freedom in
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calibrating the lowest-frequency bands of variance leads to a poorly constrained

characterization of variability in the lowest-frequencies.  Employing a two-band hybrid

calibration approach represents a tradeoff between the ability to adequately distinguish

distinct patterns of variability with respect to timescale, and yet retain adequate statistical

degrees of freedom to characterize and calibrate both bands of variability.

The RegEM method is applied separately to the calibration of proxy and

instrumental data in the high- and low-frequency bands.  The results of the two

independent reconstructions are then recombined to yield a complete reconstruction.

Each proxy record is weighted by a bandwidth retention factor defined as the percent of

its total variance within the particular frequency band under consideration.  For example,

a proxy record dominated by interannual variability, with very little low-frequency

variability (e.g. a very data-adaptive standardized tree-ring record) would be assigned a

high weight (near one) in the high-frequency band calibration and a low weight (near

zero) in the low-frequency band calibration.  Generally, all proxy series have weights

between zero and one in each frequency band with greater weight in the frequency band

with the greatest concentration of variance in the unfiltered series. This approach ensures

that, for example, a proxy with a small amount of variability in the low-frequency band

(which might be residual noise) does not have the same impact as a proxy with much

greater low-frequency variability.  However, it has the disadvantage that a high-

frequency-dominated record containing a nonetheless faithful record of low-frequency

fluctuations (e.g. an indicator of ENSO wherein the interannual variability is intrinsically

dominant) might be unduly discounted.
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D. Experimental Approach

We performed an array of RegEM CFR experiments based on different target

seasons and proxy networks, and tested variants of the approach including (a) both

conventional and hybrid frequency-domain approach, the latter with varying split

frequency, (b) allowing and not allowing for lags between predictor (proxy indicator) and

predictand (instrumental surface temperature data) and (c) use of both pre-whitened and

raw predictor/predictand data (see e.g. Cook et al., 1999; Zhang et al., 2004).  We

compared our results against previous reconstructions based on common predictor

datasets (multiproxy/PC and MXD), and alternative reconstruction methodologies [the

eigenvector-based CFR approach of Mann et al. (1998) and the local-calibration approach

used by (Osborn et al., 2004), respectively] to assess the impact of using different

reconstruction methodologies with common data.  We areally-averaged spatial

reconstructions over both the full NH domain and sub-regions of the domain (e.g.

extratropics and/or continents only) to examine the sensitivity of NH “hemispheric mean”

estimates to the actual region sampled.

CFR experiments were performed using each of the three proxy networks,

Multiproxy/PC, MXD and Combined, three seasonal target windows for the surface

temperature predictand (boreal warm season, boreal cold season, and annual calendar

mean).   In the hybrid frequency domain approach, alternative frequency boundaries were

tested (5, 10, 20 and 25 year period) within the practical constraints discussed in section

3c.

We also performed experiments in which the proxy indicators were lagged (both

forward and backward) relative to the instrumental data, under the assumption that some
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proxies may reflect, at least in part, a lagged or running average response to climate.  We

lagged the proxy data at -1, 0 and +1 years both independently and in various

combinations (e.g. -1 and 0 only, +1 and 0 only, and -1,0, and +1).  Use of lagged

versions of the proxy indicator network in addition to the nominal network itself

increases the effective size of the predictor network.  Including the proxy network at both

lag 0 and at lag -1, for example, produces a maximum predictor network of 224

indicators (twice the nominal maximum of 112 indicators) for the multiproxy/PC

network.

We also performed reconstructions in which predictors were pre-whitened prior to

calibration, followed by the re-introduction of the estimated level of serial correlation

into the predictand.  In drought reconstructions based on tree-ring networks, this

procedure has been show to lead to modest improvements in reconstructive skill (Cook et

al., 1999; Zhang et al., 2004).

 The relative skill of the reconstructions with respect to the different variants of

the CFR approach are addressed by cross-validation experiments described in section 4a.

E. Cross-Validation Procedure

A series of verification diagnostics were calculated to evaluate the skill of the

reconstructions.  First, we conducted full field verifications by removing the instrumental

surface temperature data from the CFR analysis between 1856 through 1900 and

reconstructing the surface temperature field over that interval using only the information

in the predictor networks calibrated during the 20th century (1901-1971 for the

PC/multiproxy network for reasons discussed below, and 1901-1960 for the MXD and
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network, for reasons discussed above).  We calculated verification scores using only

available instrumental data from grid boxes that were 95 percent complete (a total of 210

brid boxes) prior to initial infilling with RegEM (see section 2A).  We refer to these

verification scores as the “full field” verification scores.  We assessed verification scores

both for the full predictor network (available back to at least 1820), and using the

increasingly sparse predictor networks available on a century-by-century basis, to assess

the fidelity of the reconstruction back in time as the predictor network becomes

increasingly sparse.  We refer to these verification scores as the “available predictor”

scores.  As a cross-check, experiments were also performed for the PC/multiproxy

network for both the full network and the sparse network available back to 1400 in which

an earlier period 1856-1928 was used for calibration and the more recent 1929-1971

period was used for cross-validation.  In these cases, the cross validation scores are equal

to or better than those for the standard verification period of 1856-1900.

We also used 10 long, annual-mean instrumental grid-box temperature series, nine

of which are from western Europe and England with one from North America, to extend

cross-validation exercises back into to 1755 (3 of the 10 records are available back to that

date, and all 10 are available back to at least 1820) on a more spatially-restricted basis.

These instrumental records are part of the multiproxy/PC predictor network used by

Mann et al. (1998) and this study.  However, these records can also serve as verification

(for the annual mean reconstructions) by removing them from the predictor network and

reconstructing them using the information available in the other (non-instrumental) proxy

predictors.
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The Reduction of Error (Lorenz, 1956; Fritts, 1976) statistic (RE) and Coefficient

of Efficiency (CE) (Cook et al., 1994) have been favored as diagnostics of reconstructive

skill in most previous climate/paleoclimate reconstruction work (e.g. Fritz, 1976; Cook et

al., 1994; Mann et al., 1998; Rutherford et al., 2002; Luterbacher et al., 1999l; 2002a,b;

Pauling et al., 2003 ).  These diagnostics are defined by:

The sums are over the reconstructed values, x c  is the mean of the calibration

period, x v  is the mean of the verification period, ˆ x  is the reconstructed value, and x is the

actual value (see Cook et al., 1994, for further details).  Verification scores were

computed for both spatial means (e.g. NH mean) of the temperature field (in which case

the sums extend over years) and for the full multivariate field (in which case the sums

extend over both years and gridboxes, of which there are 210 in the “full field” cross-

validation, and 10 in the extended cross-validation).

If the reconstruction is simply the mean of the calibration period, RE=0, which is

the threshold for no skill in the reconstruction.  Similarly, if the reconstruction is simply

the mean of the verification period, CE=0.  Thus, depending on the standard, the zero

values of these statistics define the threshold for “skill” in the reconstruction.  CE≥0 is a

more challenging threshold since, unlike RE, CE does not reward the reconstruction of an

observed change in mean relative to the calibration period.

For each experiment, we calculated RE (Tables 1, 2 and 3)and CE (available at
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http://fox.rwu.edu/~rutherfo/supplements/jclim2003a) verification skill diagnostics.

While one could seek to estimate verification skill with the square of the Pearson

correlation measure (r2 ), this metric can be misleading when, as is the case in

paleoclimate reconstructions of past centuries, changes are likely in mean or variance

outside the calibration period.  To aid the reader in interpreting the verification

diagnostics, and to illustrate the shortcomings of r2 as a diagnostic of reconstructive skill,

we provide some synthetic examples which show three possible reconstructions of a

series and the RE, CE and r2 scores for each (Supplementary material available at

http://fox.rwu.edu/~rutherfo/supplements/jclim2003a).

To test whether or not the RegEM reconstruction approach might systematically

either overestimate or underestimate the variance in the reconstruction, we performed an

additional set of verification experiments in which the reconstructions were

systematically rescaled by an inflation factor between 0.5 and two (where a factor of one

leaves the reconstruction unchanged) after calibration. If there were any systematic

overestimate or underestimate of variance in the calibration process, improved

verification statistics should be achieved for scale factors significantly different from one.

Instead, we found that the optimal scale factor was close to unity for reconstructions

using each of the three networks. The optimal RE statistic (Supplementary material

available at http://fox.rwu.edu/~rutherfo/supplements/jclim2003a) for the Northern

Hemisphere mean is centered approximately at unity for the annual (Combined network)

reconstruction, slightly below unity (approximately 0.75) for the warm-season (MXD

network) reconstruction, and slightly greater than unity (approximately 1.25) for the cold-

season (multiproxy/PC network) reconstruction. These results indicate that any
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substantial (i.e., factor of two or greater) underestimate of variance is unlikely for all

three reconstructions.

We estimated self-consistent uncertainties using the “available predictor”

verification residuals for each grid box back in time after establishing that the residuals

were consistent with Gaussian white noise (Supplementary material available at

http://fox.rwu.edu/~rutherfo/supplements/jclim2003a).  Gridbox uncertainties were

propagated to estimate the uncertainty in spatial means, taking into account spatial

correlation.

4. Results

A. Comparisons between Variants of RegEM Approach

We first considered the sensitivity of the results to the effect of pre-whitening

predictors and predictand prior to calibration.  In two test cases (multiproxy/PC annual

and MXD boreal warm season) such a procedure did not result in any consistent

improvement of the verification scores.  We thus concluded that this step was both

unnecessary and, given the importance of faithfully retaining low-frequency variance,

probably undesirable in this context, since the approach admits only a limited

representation of the temporal dependence structure of the data.

We then considered the impact of allowing for lagged relationships between

predictor and predictand (including combinations of lags, e.g. 0 and +1).  The cross-

validation exercises indicated that a lag of zero (i.e., no lag) produced the optimal skill

diagnostics in all cases, with the following provisos for the cold-season reconstructions.

Because the cold-season mean encompasses parts of two calendar years, it is important to

define the cold-season convention. For the MXD network, optimal results were achieved
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for cold-season reconstructions when predictors were temporally aligned with the

predictand during the year in which the cold season ends.  This finding is not surprising

since a tree growing during the warm season cannot respond to the climate of the

following cold season, but can potentially respond to the climate of the preceding cold

season through antecedent soil moisture or soil temperature conditions.  For the

multiproxy/PC cold-season reconstructions, two lag choices give similar verification

scores, “case 1” in which predictors are aligned with the predictand during the year in

which the cold-season ends and “case 2” in which predictors are aligned with the

predictand during the year in which the cold-season begins.  We adopt “case 2” because,

though it performs slightly worse for the multivariate statistics (RE and CE lower by

about 0.03), it performs considerably better for the hemispheric mean statistics (RE

higher by 0.04 and CE higher by 0.08).  Case 2 nonetheless seems inappropriate from a

biological response point of view, and suggests the importance of a more general

approach, beyond the scope of the present study, which allows for variable lags among

the different indicators that make up the multiproxy network.  Apart from the interannual

variability, the hemispheric mean reconstruction is not sensitive to the choice of Case 1

or Case 2.  Henceforth, only the optimal results with respect to choice of lag, as described

above, are presented for the various seasonal reconstructions based on the various

predictor networks.

We then examined the dependence of skill on the frequency band split boundary

(5, 10, 20 and 25 year period) used in the hybrid frequency-band calibration approach,

finding the 20 year period boundary to give superior results in almost all cases (cross-

validation skill was either equal or greater than that for any other choice in all cases).  We
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thus consider henceforth in this study both the standard non-hybrid method (referred to as

“non-hybrid”), and the hybrid method with a f=0.05 cycle/year (20 year period)

frequency boundary (referred to as “hybrid-20”).  A comparison of the NH mean

temperature reconstruction for the two approaches (non-hybrid and hybrid-20) is shown

in Figure 2 for the multiproxy/PC network, annual mean reconstruction.  While the two

reconstructions are seen to be broadly similar, the hybrid-20 reconstruction exhibits

greater low-frequency variability, particularly prior to AD 1600 when the multiproxy

network becomes relatively sparse.  The hybrid-20 reconstruction is observed in this case

(see discussion below) to demonstrate greater skill in cross-validation for the earlier

centuries, suggesting that the greater variability is likely meaningful.  As discussed

below, whether the non-hybrid or hybrid-20 approach gives optimal results generally

depends on the particular predictor network and target season used in the reconstruction.

Another point that must be made is that, although we settle on “optimal”

reconstructions, it is not always clear from the verification scores which network, lag, and

method implementation (hybrid or non-hybrid) is the “optimal” for a given situation.

One set of possibilities (network and lag, for example) may produce a better NH mean

verification than another, but at the cost of a degraded multivariate verification, or the

hybrid method may outperform the non-hybrid with a sparse network, but the opposite

might be true with a more extensive network.  In short, it can be difficult to determine

which is the “best” reconstruction when verification skill differences are small.  In light

of this consideration, we present reconstructions below for each network and season, but

recognize that there is a larger suite of reconstructions that might be acceptable based on

verification scores.  In addition, it is not possible to perform verification experiments on
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long time scales due to the limitations of the instrumental data.  Although we use the few

long instrumental records that are available for verification, spatially extensive, long-

timescale verification can only be done using output from long GCM simulations.

B. Comparisons of RegEM Results For Different Networks and Seasonal Windows

The results of the cross validation exercises for the various experiments are

summarized in Table 1 for the full network available back to 1820, and Table 2 for the

increasingly sparse “available predictor” networks back in time (CE statistics provided in

supplementary material available at

http://fox.rwu.edu/~rutherfo/supplements/jclim2003a).  The hybrid-20 exhibits the

greatest skill (RE=0.72 and CE=0.46) for annual hemispheric mean reconstructions using

the multiproxy/PC network back to 1820.  The non-hybrid method, however, exhibits

better multivariate skill (RE=0.22 and CE=0.04), but similar hemispheric mean and

multivariate skill if instrumental predictors are withheld (Table 1).  However, for proxy

networks available further back in time (Table 2), the hybrid-20 approach produces cross-

validation skill as good as or better than the non-hybrid approach.  We thus favor the use

of hybrid-20 for long-term annual reconstructions using the multiproxy/PC network.

Similarly, hybrid-20 is favored for the annual reconstructions using the combined

network prior to AD 1600.  By contrast, the non-hybrid approach is favored by the cross-

validation results for the MXD-based summer temperature reconstructions.  The separate

selection of optimal weightings in distinct frequency bands afforded by the hybrid-20

approach likely offers a greater advantage for a network of multiple proxy types

(multiproxy/PC network) than for a more homogenous (tree-ring MXD) proxy network.
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While the different networks often differ by less than 0.03 in terms of cross-

validation RE or CE scores, and comparisons of multivariate and hemispheric-mean skill

scores sometimes lead to differing inferences, a few general conclusions can be drawn

from the cross-validation results summarized in Tables 1 and 2: (1) The hybrid-20

approach produces the best verification skill scores in general, but there are important

exceptions (i.e., the MXD summer temperature reconstructions); (2)  the multiproxy/PC

network appears best suited for annual and cold-season reconstructions ; (3) as expected

on the basis of previous work (e.g. Briffa et al., 2002b), the MXD network appears best

suited for annual and warm season reconstructions and appears to provide the best warm-

season reconstructions of all 3 networks ; (4) the Combined network exhibits the best

skill of all networks in annual reconstruction, and skill in cold-season reconstruction that

is comparable to the multiproxy/PC network.  The fact that the MXD network

outperforms the Combined network for the warm season indicates that the addition of

more proxy series does not always produce better results, even if some of those additional

proxies are of high quality (e.g. the long instrumental series in the multiproxy/PC

network).

The fact that the combined network performs, at best, only marginally better than

the two independent networks alone suggests that most of the degrees of freedom in the

Northern Hemisphere surface temperature field are already sampled by either network

alone.  We conclude that the primary limiting factor governing the skillfulness of current

proxy-based large-scale temperature reconstructions may be the quality of the network

(e.g. the effective signal-to-noise ratios of the proxy data, and the availability of records

in key regions such as the tropical Pacific), rather than the size of the network.  This
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conclusion is reinforced by a comparison of the verification skill for the multiproxy/PC

network with and without the long instrumental records (Table 1), which emphasizes that

a few high quality indicators can significantly improve reconstructive skill.  Furthermore,

the addition of poor or inappropriate seasonal indicators to a network can degrade the

skill of the reconstruction.

C. Comparisons Between RegEM Results and Results with Other Methods

We compare results using the RegEM method with previously published results

that used the same proxy networks but different methods (and a potentially different

target region).  In these comparisons, we control for the proxy network used and the

target season.

i.  Comparison With Mann et al. (1998) Annual NH Reconstruction

Although both the Mann et al. (1998) and RegEM methods make use of

covariance information in the calibration/reconstruction process, they do so in a quite

different manner (Schneider et al., 2001; Rutherford et al., 2003).  We compared the

RegEM reconstruction with the Mann et al. (1998) surface temperature reconstruction

employing the same predictor network, the same calendar annual target season, and same

global target region as Mann et al. (1998).  We eliminated the infilled values from AD

1400-1403 used by MBH98 to complete one of the Jacoby and D'Arrigo (1989) 'Northern

Treeline' series back to AD 1400.  This is easily done in the RegEM method by treating

those values as missing, something that could not have been done in MBH98.  We

terminated the calibration period in 1971 to address the criticism by McIntyre and

McKitrick (2003) of the use by MBH98 of a modest number of infilled missing proxy
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values in the PC/Multiproxy network between 1971 and 1980.  However, we also show

the verification results for the case where the calibration interval ends in 1980 for direct

comparison with the Mann et al. (1998) results.  Cross-validation results are compared

(Table 3) with those of Mann et al. (1998) for the PC/multiproxy network available back

to 1820, using the same (219) grid boxes used for verification by Mann et al. (1998) over

the period 1856 to 1900 (top section of Table 3) and for the 10 temperature grid boxes

available back to 1820 (bottom section of Table 3—in this case long instrumental

indicators have been withheld from the predictor network).  These comparisons indicate

similar levels of skill in the RegEM (both non-hybrid and hybrid-20) and Mann et al.

(1998) reconstructions, with any preference dependent on the precise metric of

reconstructive skill.  We deduce from the “available predictor” skill diagnostics (Table 2)

that the hybrid-20 RegEM reconstruction is increasingly preferable over the non-hybrid

reconstruction as the predictor network becomes sparser back in time (for annual NH

temperature, at least).

A remarkably close similarity is observed (Figure 3) between the RegEM and Mann et al.

(1998) NH annual mean surface temperature reconstructions.  The two reconstructions

are indistinguishable well within their 2-sigma uncertainties.  The RegEM NH

reconstruction using all available individual proxy records (rather than replacing spatially

dense tree-ring networks with their leading principal components as in the MBH98

Multiproxy/PC network) again yields nearly indistinguishable estimates (Figure 2).  The

close reproducibility of the MBH98 reconstruction based on both (a) the use of an

independent CFR method and (b) the use of the individual proxies used by MBH98 rather
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than the Multiproxy/PC representation used by MBH98, disproves the arguments put

forth by McIntyre and McKitrick (2003) in support of their putative “correction” to the

MBH98 reconstruction.

ii.  Comparison Involving Previous MXD-based Warm-Season Extratropical NH

Reconstruction

Here we compare the RegEM warm season MXD-based NH mean reconstruction

with that of Osborn et al. (2004), the latter based on an areally-weighted mean of 115

locally-calibrated MXD 5° by 5° grid boxes (Figure 1b).  This reconstruction (Figure 4)

is similar, though not identical, to that presented by Briffa et al. (2001) using the same

MXD data; the minor differences arise because Briffa et al. (2001) used a principal

component regression of regionally-averaged MXD data, rather than the average of

locally-calibrated reconstructions generated by Osborn et al. (2004).  In this comparison

we control for the proxy network (both use the MXD network) and the target season

(both target the boreal warm season mean) and investigate the effects of both the target

region and reconstruction method.

Figure 4a compares the Osborn et al. (2004) MXD reconstruction and the RegEM

hybrid-20 NH reconstruction of the full NH mean.  The Osborn et al. reconstruction

exhibits greater interannual variability and is on average slightly cooler in past centuries

than the RegEM reconstruction.  Since the proxy network and the target season are

identical, the observed differences must be due to a combination of differing method and

target region.  To progressively control for target region we first mask the RegEM spatial

reconstruction for only the terrestrial extratropical (i.e., north of 20°N ) grid boxes
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(Figure 4a) and finally the precise 115 grid boxes averaged by Osborn et al. to obtain a

hemispheric mean reconstruction (Figure 4b).  The latter masking of the RegEM

reconstruction yields a hemispheric mean estimate that is nearly indistinguishable from

the Osborn et al. reconstruction, suggesting that the initial differences evident in Figure

4a result largely from differing initial target regions.  The remaining modest differences

(Figure 4b), which are mostly evident during the relatively data sparse initial centuries,

are presumably due to the differences between methods (RegEM CFR method versus

spatial average of the locally-calibrated grid box data).

Finally, we include a comparison with an alternative warm-season continental

surface temperature reconstruction based on an even more restricted spatial distribution

(a maximum of 14 sites) of tree-ring width data (Esper et al., 2002).  This reconstruction

exhibits greater variability than most other published reconstructions (see Briffa and

Osborn, 2002; Mann and Hughes, 2002; Mann, 2002a; Mann et al., 2003a,b).  However,

when restricted to the grid box locations corresponding to the modest number of sites

used in this reconstruction (excepting one grid box that is unavailable from the

instrumental record and one that is outside our reconstruction domain), the RegEM MXD

warm-season NH reconstruction shows a remarkably similar character to the Esper et al.

(2002) reconstruction (Figure 4c).  This result suggests that the greater variability evident

in the Esper et al. reconstruction likely results from the restricted sampling provided by

the network used, though some residual differences may be due to different methods of

tree-ring standardization (Esper et al., 2002; Briffa and Osborn, 2002; Mann and Hughes,

2002; Cook et al., 2004) and differences in reconstruction method.
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From these comparisons we can draw an important conclusion that might have

been anticipated from spatial sampling considerations alone: reconstructions of full

hemispheric means are likely to exhibit lower amplitude variability that those based on a

more restricted sub-domain of the field, due to the tendency for the cancellation of

anomalies of different signs and magnitudes in different regions (see e.g. Mann et al.,

2003b).

D. Comparisons Of Hemispheric Mean Series

Figure 5 shows the annual, warm season and cold season NH mean

reconstructions produced using the different predictor networks.  The annual (Figure 5a)

reconstructions are quite similar for all three predictor networks back to approximately

AD 1700, and are largely within the statistical uncertainties of each other back through

AD 1400.  A similar statement holds for the cold-season reconstructions, though the

differences are slightly greater during certain time intervals.  For the warm season, only

the MXD network provides a skillful reconstruction back to AD 1400, but all

reconstructions are similar over the interval in which the cross validation experiments

indicate a skillful reconstruction (1750 for the Multiproxy/PC network and 1500 for the

Combined network).  It is clear from the similarity of the MXD and Combined network

warm-season reconstructions that the Combined network reconstruction is dominated by

the MXD predictors, as one would expect based on the verification scores.

Finally, we compare (Figure 5d-e) the RegEM NH reconstructions based on what

appears to be optimal apparent predictor network for each season (see section 4b: MXD-

warm season, Multiproxy/PC-cold season, Combined-annual).  These reconstructions

show that the cold-season mean reconstruction generally exhibits the greatest interannual
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variability (particularly when a larger number of indicators are available).  The warm-

season reconstructions often show stronger cooling events, in many cases associated with

large explosive volcanic events (e.g. after the AD 1600 eruption).  As discussed further

below, this observation is consistent with the modeled response to volcanic forcing,

which shows cooling to dominate during the warm season, particularly over continental

regions (Kirchner et al., 1999; Shindell et al., 2003).  Reconstructions which emphasize

the warm-season and continental regions are thus likely to exhibit greater summer

cooling during periods of intense explosive volcanic activity.

E. Spatial Patterns

It is instructive to examine the spatial and seasonal details evident in the actual

reconstructed patterns.  We thus focus on the reconstructed temperature patterns for some

selected years (Figure 6), using reconstructions based on the optimal networks for each

season as discussed above.  We consider the year 1601 (cold-season 1600/1601)

following the Huaynaputina (Peru) eruption (February 1600); 1783, the year of the Laki

eruption in Iceland and an exceptionally cold winter in parts of North America and

Europe; 1791, an established unusually strong El Nino year (Quinn and Neal 1992);

1816, the “Year Without a Summer” one year after the explosive Tambora eruption of

April 1815, 1817, two years after the eruption, and finally, 1834, an exceptionally warm

year in Europe as evidenced by the central England temperature record (Manley,

1974—see also Mann et al., 2000b and Briffa et al., 1998a,2002b).

There is a tendency for opposite seasonal surface temperature responses to tropical

volcanic forcing.  Strong warm-season continental cooling is apparent in the summers
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after the volcanic years 1600, and 1815 contrasting with the tendency for an offsetting

pattern of continental warming during the winter following those eruptions (or even two

winters, following the 1815 eruption).  This pattern has been observed in model

simulations of the dynamical response to an explosive tropical eruption (Groisman, 1992;

Graf et al., 1993; Robock and Mao, 1995; Kirchner et al., 1999; Shindel et al., 2003).

The tendency for cooler summers and warmer winters appears to be responsible for the

reduced annual mean cooling response to volcanic forcing (Shindell et al., 2003) evident

in the annual mean reconstructions.  Large-scale warmth both in the tropical Pacific, and

in the extratropics, is clearly evident for the El Nino year of 1791 during all seasons, but

is particularly evident in the cold-season (i.e., 1791/1792) pattern.

5. Conclusions

Comparisons both within the suite of reconstructions presented in this study, and between

these reconstructions and others previously developed (Mann et al., 1998; Osborn et al.,

2004; Esper et al., 2002) allow us to evaluate the impacts of method, target season, target

region, and underlying proxy data network on large-scale surface temperature

reconstructions.  (The reconstructions performed in this study are available at

http://fox.rwu.edu/~rutherfo/supplements/jclim2003a.) These evaluations suggest that

differing methods of reconstruction (e.g. different CFR techniques or local calibration

approaches) yield nearly indistinguishable results if differences in underlying proxy

network, target season and target region are controlled for.  We conclude that proxy-

based temperature reconstructions are robust with respect to a wide array of alternative

statistical approaches.  Differences in target region appear to lead to more substantial
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differences.  Spatial averages over increasingly sparse domains (e.g., extratropical

continents only, or a small number of isolated regions of the extratropical continents

only) yield “hemispheric mean” estimates with increasingly greater variability.

Meaningful comparisons of different hemispheric mean estimates are thus only possible

when differences in target spatial domain are taken into account e.g. through an

appropriate spatial masking of the surface temperature field reconstructions.  Differences

in target seasonal window are also important, with different predictor networks (e.g. the

Multiproxy/PC vs. MXD vs. Combined network) each indicating preferential

reconstructive skill for different seasonal windows.  The resulting optimal seasonal (cold-

season, warm-season, and annual mean) reconstructions indicate modest differences for

the main hemispheric mean temperature changes, and more substantial differences

spatially, consistent with the distinct spatial and seasonal features typically associated

with climate signals such as El Niño or the response to volcanic radiative forcing.

In addition, we find that the number of proxies can be less important than the

quality of the proxy and its suitability for reconstructing a particular season.  As an

example, the MXD network alone clearly outperforms the Combined network in warm-

season verification tests.  Furthermore, it is not always easy to determine the best

network, lag and method to use in every situation because differences in verification

scores can be small.  In the situations we examined, however, differences in the

reconstructions are also small.

Finally, the evidence for exceptional late 20th century warmth in the context of

the period since AD 1400 (in warm, cold and annual temperatures) is a robust conclusion

with respect to all of the factors considered.
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Analysis Multiproxy/PC MXD Combined
Season

Verif.
Period Ann. No

inst.
Cold Warm Ann. Cold Warm Ann. No

inst.
Cold Warm

1856-
1900

0.22
0.69

0.07
0.57

0.05
0.53

0.06
0.57

0.14
0.56

0.06
0.45

0.14
0.50

0.21
0.69

0.12
0.61

0.03
0.55

0.11
0.35

non-
hybrid

1755-
1900

0.13
0.24

0.24
0.26

0.21
0.26

1856-
1900

0.20
0.72

0.07
0.59

0.05
0.56

0.02
0.15

0.14
0.55

0.08
0.56

0.12
0.38

0.13
0.58

0.12
0.61

-0.04
0.47

0.00
0.14

20-year
hybrid

1755-
1900

0.13
0.20

0.26
0.29

0.19
0.30

Table 1
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Table 1.  RegEM-method Reduction of Error (RE) verification scores based on full

network that is available back to 1820 (112 predictors in the multiproxy/PC case and 111

grid-box indicators in the MXD case—4 MXD gridboxes are not available prior to 1856

and therefore are never used in reconstructions) for different seasons and proxy networks.

For table cells with two rows of verification scores, those scores are 1856-1900

multivariate (calculated over verification gridboxes and years) and 1856-1900 NH mean

(calculated for the mean NH time series over the verification years).  Where applicable,

cells with additional rows include 1755-1900 multivariate and 1755-1900 mean

verification scores.  “No inst.” indicates the long instrumental records present in the

proxy network have been withheld from the network.  In all cases the calibration period is

1901-1971
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Analysis Multiproxy/PC MXD Combined
Season Ann. Cold Warm Ann. Cold Warm Ann. Cold Warm

Network back to 1750, proxies only*
nohybrid 0.05

0.52
0.02
0.47

0.03
0.21

0.14
0.56

0.06
0.45

0.14
0.50

0.10
0.64

0.00
0.54

0.09
0.36

20-year
hybrid

0.04
0.52

0.00
0.47

0.06
0.20

0.14
0.55

0.08
0.56

0.12
0.38

0.60
0.51

-0.09
0.49

0.09
0.13

Network back to 1700
nohybrid 0.04

0.51
0.02
0.51

0.01
0.03

0.13
0.56

0.06
0.45

0.12
0.41

0.09
0.61

-0.02
0.57

0.50
0.17

20-year
hybrid

0.04
0.53

0.01
0.52

0.00
0.01

0.13
0.55

0.04
0.53

0.11
0.33

0.07
0.52

-0.08
0.50

0.02
0.08

Network back to 1600
nohybrid 0.05

0.53
0.04
0.53

0.01
0.06

0.12
0.48

0.07
0.40

0.10
0.31

0.09
0.58

0.02
0.54

0.04
0.13

20-year
hybrid

0.06
0.56

0.02
0.52

-0.02
0.00

0.13
0.52

0.05
0.53

0.09
0.27

0.09
0.57

-0.02
0.50

-0.06
0.00

Network back to 1500
nohybrid 0.07

0.39
0.08
0.56

0.00
-0.42

0.11
0.46

0.07
0.39

0.10
0.36

0.08
0.52

0.02
0.51

0.03
-0.12

20-year
hybrid

0.08
0.47

0.06
0.55

-0.01
-0.36

0.12
0.50

0.07
0.54

0.09
0.34

0.10
0.59

0.00
0.53

0.04
0.11

Network back to 1400
nohybrid 0.06

0.40
0.08
0.55

0.00
-0.34

0.11
0.49

0.08
0.42

0.09
0.36

0.07
0.46

0.04
0.54

0.00
-0.40

20-year
hybrid

0.06
0.46

0.08
0.54

-0.01
-0.36

0.10
0.48

0.06
0.53

0.05
 0.20

0.09
0.57

0.04
0.56

0.02
-0.05

Table 2
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Table 2.  Verification Reduction of Error (RE) scores for the different proxy networks

and seasons using only the proxies available over different centuries.  The verifications

scores are presented for the multivariate (top row in each table cell) and NH mean

(bottom row in each table cell) cases. In all cases the calibration period is 1901-1971 and

the verification period is 1856-1900.

* The MXD proxy network is nearly complete by 1750 so the results for this verification

experiment are the same as those for the full network, within round off errors.

Ann.: Annual
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RegEM Mann et al. (1998)
Analysis mult

RE
1820-1900

mult
RE

1856-1900

globe
RE

1856-1900

mult
RE

1820-1900

mult
RE

1856-1900

globe
RE

1856-1900
no hybrid N/A 0.25(0.21) 0.78(0.74) N/A 0.22 0.76
hybrid 20 N/A 0.20(0.20) 0.73(0.76) N/A N/A N/A

No long instrumental or historical records as proxies

nohybrid 0.10(0.14) 0.05(0.02) 0.55(0.46) 0.19 0.11 0.65
hybrid20 0.12(0.14) 0.04(0.01) 0.53(0.55) N/A N/A N/A

Table 3
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Table 3: Comparison of verification scores between the Mann et al. (1998) method and

the RegEM method used here, based on annual-mean temperature reconstructions using

the full network of 112 predictors.  The same grid boxes used by Mann et al. (1998) for

calibration and for verification were used in the RegEM cases. The RE scores are

presented for both the multivariate (mult) and global mean (globe) cases.  Here, the

global mean is the average of all the available Mann et al. (1998) verification grid boxes,

not just those in the NH. (N/A indicates the scores are not relevant).  Numbers in

parentheses indicate the calibration period ends in 1971 (see text for details) all other

calibration periods end at 1980.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 1: Distribution of proxies for the two networks used in this study.  (a) the

multiproxy/PC network of Mann et al. (1998). (b) the age-banded maximum latewood

density (MXD) network of Briffa et al. (2001) where each dot corresponds to the center

of one 5° by 5° grid box.

Figure 2.  Comparisons of stepwise non-hybrid and hybrid-20 reconstructions for annual

mean using the multiproxy/PC network and the hybrid-20 reconstruction using the full

multiproxy network.  Also shown is the instrumental record consisting of the few

available data from 1750-1856 (Mann, 2002a) and the Jones et al. (1999) data for 1856-

2000.

Figure 3.  Comparison between the RegEM-based hybrid-20 annual mean reconstruction

(using the Mann et al. multiproxy/PC network) and Mann et al. (1998) showing

overlapping uncertainties in both estimates. Also shown is the long instrumental record

(see caption for Figure 3) for comparison.
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Figure 4. Comparison of summer mean temperatures based on the MXD network (Briffa

et al., 2001, 2002a, 2002b) using the RegEM hybrid-20 method and that of Osborn et al.

(2004).  (a) The RegEM full NH mean and extratropical land only mean versus Osborn et

al. (submitted) (see text for details) (b) Comparison using the RegEM reconstructed grid

boxes that coincide with those reconstructed by Osborn et al. (2004) and Briffa et al.

(2002b). (c) MXD summer mean reconstruction based on the restricted set of grid boxes

sampled in an independent warm-season extratropical temperature reconstruction by

Esper et al. (2002) (see text for details).

Figure 5.  Comparisons of the RegEM-based results for different seasons and proxy

networks.  (a) annual mean reconstruction using the three proxy networks

(multiproxy/PC, MXD and Combined).  (b) warm season comparison and (c) cold season

comparison.  (d) shows the three seasonal reconstructions produced by the best network

for each season based on the verification scores, while (e) is the same comparison

restricted to the extratropical continents.

Figure 6.  Maps of the full field reconstruction for interesting years using the three

different proxy networks (multiproxy/PC, MXD and Combined) to reconstruct three

seasonal targets.  The years shown are the following: 1600, the year of the Huaynaputina

(Peru) eruption; 1783, the year of the Laki eruption in Iceland; 1791, an El Nino year

(Quinn and Neal 1992); 1816, the “Year Without a Summer” following the Tambora

eruption in 1815; and 1834, an exceptionally warm year in Europe (Mann et al., 1998).


