
 1

The Influence of Climate State Variables on Atlantic Tropical Cyclone Occurrence 1 

Rates 2 

 3 

Thomas A. Sabbatelli 4 

Michael E. Mann 5 

 6 

Department of Meteorology and Earth and Environmental Systems Institute, 7 

Pennsylvania State University, University Park, PA, USA 8 

 9 

JGR-Atmosphere (in press), April 24 2007 10 

 11 



 2

 12 

Abstract 13 

We analyzed annual North Atlantic tropical cyclone (TC) counts from 1871-2004, 14 

considering three climate state variables—the El Niño/Southern Oscillation (ENSO), 15 

peak (Aug-Oct or ‘ASO’) Sea Surface Temperatures (SST) over the main development 16 

region (‘MDR’: 6-18o N, 20-60o W), and the North Atlantic Oscillation (NAO)—thought 17 

to influence variations in annual TC counts on interannual and longer timescales. The 18 

unconditional distribution of TC counts is observed to be inconsistent with the null 19 

hypothesis of a fixed rate random (Poisson) process. However, using two different 20 

methods, we find that conditioning TC counts on just two climate state variables, ENSO 21 

and MDR SST, can account for much or all of the apparent non-random variations over 22 

time in TC counts. Based on statistical models of annual Atlantic TC counts developed in 23 

this study and current forecasts of climate state variables, we predicted m=15±4 total 24 

named storms for the 2007 season.  25 
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1. Introduction 26 

 27 

A number of past studies have examined climatic influences on variations at interannual 28 

and longer timescales in the occurrence and the intensity of North Atlantic Tropical 29 

Cyclones (TCs) [e.g. Gray, 1984].  The primary factor considered in past studies is the El 30 

Niño/Southern Oscillation (ENSO) [e.g. Bove et al, 1998; Landsea et al, 1999; Elsner et 31 

al, 2000; Elsner 2003;  Elsner et al, 2006; Elsner and Jagger, 2006], though the 32 

influence of the North Atlantic Oscillation (“NAO”) has also been examined in some 33 

studies [Elsner et al, 2000; Elsner 2003;  Elsner et al, 2006; Elsner and Jagger, 2006]. 34 

Both phenomena are believed to influence TC production, development, or prevailing 35 

trajectories through their influence on storm tracks or vertical wind shear in the tropical 36 

North Atlantic.  The ENSO phenomenon tends to enhance (diminish) TC counts during 37 

storm seasons coinciding with an incipient La Nina (El Niño) event, while the NAO tends 38 

to enhance (diminish) TC counts during storm seasons coinciding with an incipient 39 

negative (positive) phase winter.  Influences are historically found only during the storm 40 

season preceding the anomaly in the index; there is no detectable impact on the following 41 

year’s storm season. 42 

 43 

Sea Surface Temperatures (SST) over the main development region (‘MDR’: 6-18N, 20-44 

60W) for North Atlantic TCs during the season (Aug-Oct or ‘ASO’) of Peak TC 45 

production [Emanuel, 2005a; Webster et al, 2005;2006 Mann and Emanuel, 2006; Sriver 46 

and Huber, 2006; Elsner 2006] have also been argued to be an important influence on 47 

long-term North Atlantic TC behavior. MDR SSTs are considered a proxy for potential 48 
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TC intensity [Emanuel, 2005a], with annual TC counts enhanced (diminished) in seasons 49 

associated with positive (negative) MDR SST anomalies. Related studies have argued for 50 

a significant influence of the so-called “Atlantic Multidecadal Oscillation” (“AMO”) on 51 

North Atlantic TC numbers [e.g. Goldenberg et al, 2001]. However, as the procedures 52 

used to define the “AMO” signal in terms of North Atlantic SSTs in such studies has 53 

been challenged in recent work [Trenberth and Shea, 2006; Mann and Emanuel, 2006], 54 

we have chosen in our analyses here to employ MDR ASO SSTs themselves [as in e.g. 55 

Emanuel, 2005; Mann and Emanuel, 2006; Elsner, 2006], rather than an index such as 56 

the “AMO” derived through statistical processing of the North Atlantic SST field. 57 

 58 

Previous studies have investigated long-term trends in TC statistics [e.g. Solow and 59 

Moore, 2000] or have used regression models employing climatic indices [Gray 1984;  60 

Elsner et al, 2000; 2006; Elsner and Jagger, 2006] and trend parameters [Elsner 2003] to 61 

predict interannual variations in TC activity. In no previous studies we are aware of, 62 

however, have investigators examined whether conditioning on climatic factors can 63 

account for the entirety of non-random structure in the statistical distribution of historical 64 

North Atlantic annual TC counts.  In this study we perform such an examination, 65 

employing two distinct and complementary methods to test the hypothesis that annual TC 66 

counts follow a state-dependent Poisson process against the null hypothesis of a constant 67 

rate Poisson random process.    68 

 69 

Any statistical approach to analyzing TC counts must respect the Poisson distributional 70 

nature of the underlying process (that is, that TC counts are characterized by a point 71 
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process with a low occurrence rate). Our first approach employs Poisson regression [see 72 

e.g. Elsner et al, 2000; 2001; Elsner, 2003; Elsner and Jagger, 2006], a variant on linear 73 

regression which is appropriate for modeling a conditional Poisson process in which the 74 

expected occurrence rate co-varies with  some set of state variables (e.g. indices of 75 

ENSO, the NAO, and MDR SST).  The second approach categorizes the data with 76 

respect to the climate state variables using a  binary classification scheme, testing both 77 

for the statistical significance of differences in occurrence rates between the resulting 78 

data subgroups, and examining the resulting subgroup distributions for consistency with a 79 

Poisson random process. The two methods are complementary in that the latter method 80 

avoids the restrictive linearity assumptions implicit in regression, while the former 81 

method accounts for continuous variations in expected TC occurrence rates as a function 82 

of the underlying state variables (e.g. distinguishing between the impacts of strong vs. 83 

weak El Nino events).  84 

 85 

2. Data  86 

Our analysis employed four datasets including (1) historical annual North Atlantic TC 87 

counts, (2) the Dec-Feb (DJF) Niño3.4 SST ENSO index, (3) the Dec-Mar (DJFM) NAO 88 

index, and (4) Aug-Oct (ASO) seasonal SST means over the main development region 89 

(“MDR”) of 6º–18ºN, 20º–60ºW. Our analysis was confined to the 135 year interval 90 

1870-2004 over which all three primary datasets of interest were available. The more 91 

recent seasons of 2005 and 2006 for which preliminary data are available, are 92 

subsequently interpreted in the context of these analyses, while forecasts for the 2007 93 
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season are made based on projected values of the climate indices.  Data are available at 94 

the supplementary website: http://www.meteo.psu.edu/~mann/TC_JGR07 95 

 96 

 97 

Historical estimates of the annual TC counts are available back to 1850 [Jarvinen et al, 98 

2005].  The reliability of these data, particularly prior to the late 20th century in which 99 

satellite and aircraft reconnaissance are available, has been vigorously debated in recent 100 

studies [e.g. Landsea, 2005; Emanuel 2005b]. Emanuel [2005b] nonetheless makes a 101 

credible argument for why long-term TC count data should be reliable, even if TC 102 

intensity estimates are not. As Emanuel [2005b] notes, prior to aircraft reconnaissance, 103 

ships crossing the Atlantic would not have been warned off from a developing or 104 

approaching storm, and were likely to encounter either the storm or evidence of its 105 

existence. Combined with other impacts on islands or coastal localities, the existence of 106 

an Atlantic tropical cyclone was therefore likely to have been known, even prior to 107 

aircraft reconnaissance. 108 

 109 

Various alternative indices of the El Nino/Southern Oscillation (ENSO) are available. We 110 

employed the boreal winter (DJF) Niño3.4 index (SST averaged over the region 5oS-5oN, 111 

120'-170'W) favored by many investigators [e.g. Trenberth, 1997].  Use of alternative 112 

(e.g. Niño3) ENSO indices yielded similar conclusions.  The Niño3.4 index was taken 113 

from the Kaplan et al [1998] dataset and updated with subsequent values available 114 

through NCEP.  The boreal winter (DJFM) NAO index was taken from Jones et al 115 

[1997], updated with more recent values from the University of East Anglia/CRU.  For 116 
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simplicity, the ‘year’ was defined to apply to the preceding storm season for both indices 117 

(e.g. the 1997/1998 El Nino and winter 1997/1998 NAO value were assigned the year 118 

1997). 119 

 120 

The MDR SST index was taken from the HadISST2 observational SST dataset [Rayner et 121 

al., 2003] and updated with more recent values from the UK Met Office.  The data were 122 

averaged over the season most relevant to tropical cyclone formation (August-September-123 

October, or “ASO”).  Estimated uncertainties in the observational SST data are relatively 124 

small back to 1870 for both the Nino3.4 and North Atlantic regions of interest in this 125 

study [see e.g. Kaplan et al, 1998]. 126 

 127 

3. Methods 128 

 129 

As in previous studies [e.g. Elsner et al, 2000], we assumed that annual TC counts n can 130 

be modeled as a (Poisson) point process, viz. 131 

Pi(n) = (1/n!) μnexp(-μ)   (1) 132 

where the mean occurrence rate μ, is the sole free parameter of the distribution, and in the 133 

unconditional case has a Maximum Likelihood value equal to the mean annual count. 134 

While the appropriate null hypothesis holds the rate parameter  μ  to be constant over 135 

time, it is of interest to investigate the alternative hypothesis that μ  may vary with 136 

respect to some set of governing factors or ‘state variables’ [e.g. time—Solow and 137 

Moore, 2000, Elsner 2003 and/or climate state indices—e.g. Elsner, 2003; Elsner and 138 

Jagger, 2006].  139 
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 140 

For the purposes of our study, μ  was conditioned on the three climate state variables 141 

discussed above (ENSO as measured by the DJF Niño3.4 index, NAO as measured by, 142 

the DJFM NAO index, and MDR SST as measured by the MDR ASO SST index).  Two 143 

distinct statistical approaches were taken, as described below. We note that here is room 144 

for further development of the methods presented below. For example, one could extend 145 

the approaches used in the present study to account explicitly for the increased 146 

uncertainty in TC counts back in time, and in particular the impact of unreported events 147 

[e.g. as in Solow and Moore, 2000; Elsner and Jagger, 2006].  148 

 149 

a. Binary Classification Approach 150 

In this approach, each year is classified as belonging to one of two possible binary states 151 

(positive or negative) with respect to each state variable, depending on sign of the 152 

anomaly in that variable (relative to the 1870-2004 mean). An alternative tertiary 153 

classification procedure was tested in which a third neutral category was introduced 154 

(defined by absolute anomalies within one standard deviation). The choice of binary vs. 155 

tertiary classification schemes represents a tradeoff between the level of discrimination 156 

(two vs. three states) and resulting sample sizes. While similar results were obtained 157 

using the tertiary categorizations scheme, we preferred the binary classification scheme 158 

due to the larger sizes of the data sub-samples. For similar reasons, only the two most 159 

significant (see section 4 for further discussion) of the three state variables, MDR SST 160 

and Niño3.4 were used. 161 

 162 
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Using the binary classification scheme, we categorized years with respect to each of the 163 

two factors separately, and further, into three distinct sub-groupings, defined as  (1) 164 

‘favorable’: years in which both factors are favorable to TC production (positive MDR 165 

SST and negative Niño3.4 anomalies), (2) ‘unfavorable’: years in which both factors are 166 

unfavorable to TC production (negative MDR SST and positive Niño3.4 anomalies), and 167 

(3) ‘neutral’: years in which the two factors tend to offset in terms of their favorability to 168 

TC formation, i.e. anomalies in MDR SST and Niño3.4 that are of the same sign.  169 

 170 

We used a χ2 test to evaluate the goodness-of-fit of a Poisson distribution for both the 171 

unconditional (i.e., all 135 years grouped together) and conditional (i.e., ‘favorable, 172 

‘neutral’, and ‘unfavorable’) data categorizations. We assumed χ2  to have ν=B-2 degrees 173 

of freedom, where B is the number of occupied bins, and 2 degrees of freedom are 174 

subtracted based on constraints provided from the data (normalization of the distribution, 175 

and estimation of the rate parameter μ). The bin bandwidth was chosen using the 176 

objective criterion cited by Wilks [2005], 177 

h≈ c IQR/N1/3   (2) 178 

where N is the sample size, IQR  is the inter-fourth quartile range of the data,  and c=2 is 179 

taken for relatively skew distributions such as the Poisson.  h was rounded to the nearest 180 

integer value. 181 

 182 

The t statistic was then used to evaluate the statistical significance of the differences in 183 

TC rate parameter estimates μi  between any two data sub-samples. The t statistic reduces 184 

to 185 
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t = (μ1− μ2)/(μ1/φ1+ μ2/φ2)1/2  (3) 186 

using the expression for the sample variance of a Poisson distribution, σ2=μ, where 187 

φ1 and φ2  denote the degrees of freedom in the respective sub-samples, and the degrees of 188 

freedom in the t statistic is min(φ1,φ2)-1. When only Niño3.4—which is serially 189 

uncorrelated—is used as a conditioning variable, φ1 and φ2  reduce to simply N1 and N2, 190 

the nominal sizes of the respective sub-samples.  However, significant serial correlation 191 

in the MDR SST series (the lag one autocorrelation coefficient ρ=0.55 yields a 192 

decorrelation timescale τ=1.67 years) decreases the effective number of independent 193 

climate states sampled when conditioning on MDR SST as e.g. two neighboring years are 194 

not statistically independent with respect to the enhanced likelihood of elevated TC 195 

counts. Reduced degrees of freedom (φ) were therefore taken into account in estimating 196 

the statistical significance of t scores when conditioning fully or partly on the MDR SST 197 

series. In such cases, only events spaced more than two decorrelation timescales (i.e., 3 198 

years) apart were considered to constitute statistically independent samples. 199 

 200 

Finally, we used a cross-validation procedure to evaluate the predictive skill in the binary 201 

conditional Poisson model approach.   One could [see e.g. Elsner and Jagger, 2006] 202 

leave each year out one at a time, forming conditional TC rate parameter estimates based 203 

on the remaining years and evaluating the skill of the resulting classifications applied to 204 

each choice of missing year.  However, when serial correlation is present in the state 205 

variables, which as discussed above is the case here, the results of such a cross-validation 206 

procedure are likely to give a too liberal an estimate of skill.  We therefore employed an 207 

alternative split calibration/validation procedure. Conditional TC rate parameter estimates 208 
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were obtained using the first half (i.e., years 1870-1937) of the data, and subsequently 209 

used to categorize the subsequent TC count data based on the climate state variable 210 

anomalies (measured relative to the calibration period baseline) over the latter half (i.e., 211 

years 1943-2004). This procedure was then repeated with the role of the first and last half 212 

of the datasets reversed. The average of the mean-squared error (MSE) between the 213 

predicted and observed TC count data obtained for both sub-intervals was used as an 214 

estimate of cross-validated MSE, which was compared to the MSE obtained over the  full 215 

(1870-2004) model development interval.  216 

 217 

b. Poisson Regression 218 

Poisson regression is a variant on linear regression appropriate for data such as TC counts  219 

for which the null hypothesis of a Poisson distribution is appropriate [see  Elsner et al, 220 

2000; 2001; Elsner, 2003; Elsner and Jagger, 2006 for further discussion]. Given a count 221 

series Y  with unconditional mean rate μ  believed to follow a state-dependent Poisson 222 

distribution,  Poisson regression estimates a generalized linear model for the conditional 223 

expected rate of occurrence λ=E(Y) as a function of a set of state variables X1, X2, ..., XM, 224 

of the form,  225 

log λ = β0+β1 X1+β2 X2+....+βM XM  (4) 226 

or alternatively, 227 

λ = exp[β0+ β1 X1+β2 X2+....+βM XM]  (5) 228 

where the residuals are assumed to be Poisson distributed.  229 

 230 
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Unlike ordinary linear regression, a closed-form analytical solution to eq. 5 is not 231 

possible. However, it is straightforward to numerically estimate maximum likelihood 232 

values for the regression parameters βi, and thus an estimate for the conditional expected 233 

occurrence rates λi.  The residual series εi = Yi -λi+μ  can be analyzed for consistency 234 

with a Poisson distribution based on a χ2 test, as described in section ‘a’ above.  235 

 236 

 Poisson regression was performed for various combinations of climate state variables as 237 

discussed in more detail in section 4. Cross-validation was performed using the split 238 

calibration/validation procedure discussed in section ‘a’ wherein the regressions were 239 

performed alternatively using the first and last half of the full data set, with TC counts 240 

predicted and compared with observed counts over the remaining independent half of the 241 

data set.  Quality of regression fit was measured by both the coefficient of determination 242 

R2 and mean square error (MSE).   243 

 244 

4. Results 245 

 246 

Certain relationships between annual TC counts and the Niño3.4 and MDR SST time 247 

series are evident by inspection alone (Figure 1). The clear increase in TC counts 248 

subsequent to the 1920s, and the positive trend over roughly the past decade, closely 249 

coincide with corresponding tendencies for positive MDR SST anomalies. Anomalously 250 

low TC counts in certain years (e.g. 1982 and 1997) correspond to prominent El Niño 251 

years, and the low TC counts of the early 1990s correspond to general tendency for El 252 

Niño-like conditions. The NAO has a weaker, but nonetheless statistically significant 253 
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impact on TC counts, with a tendency for elevation of counts during negative NAO years. 254 

The Pearson correlation coefficients between the TC counts and the three predictors 255 

(r=0.48 for MDR SST, r=-0.32 for Niño3.4, and r=-0.25) are statistically significant at 256 

the p<0.0001, p=0.0001, and p=0.003 levels respectively for a two-sided hypothesis test, 257 

taking into account the serial correlation in each series.  The extent to which these state 258 

variables can account for the non-random structure in long-term TC counts is investigated 259 

below using each of the two methods discussed in section 3.  260 

 261 

a. Binary Classification Approach 262 

We first note that the unconditional distribution of TC counts is highly inconsistent with 263 

the null hypothesis of a random Poisson process. Based on a χ2 test (Table 1) we reject at 264 

the p<0.05 level the null hypothesis of a Poisson process for the entire TC count record 265 

1870-2004. By inspection (Figure 3, panel a), it is clear that there is bimodality in the 266 

distribution which cannot be captured by the model of a constant mean Poisson process.   267 

 268 

Conditioning on ENSO influences (i.e. on Niño3.4) alone does not ameliorate this 269 

problem, as the conditional distributions for negative Niño3.4 values (i.e. ‘La Nina’-like 270 

behavior) is still observed (Table 1) to be inconsistent (p<0.05) with a Poisson 271 

distribution. Conditioning on MDR SST provides significant improvement, though the p 272 

values (p=0.79 and p=0.25 for +MDR SST and –MDR SST respectively) average only 273 

just above the median (p=0.5) level between acceptance and rejection of the null 274 

hypothesis. However, when TC counts are simultaneously conditioned on both Niño3.4 275 

and MDR SST, we find that the null hypothesis can likely not be rejected. The resulting 276 
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three separate distributions (‘favorable’, ‘neutral’, and ‘unfavorable’, as defined in 277 

section 3a) are generally well captured by a Poisson distribution (Figure 3, panels b-d). 278 

While in one of the three cases (‘favorable’) the p value (p=0.27) indicates a moderate 279 

27% chance of falsely rejecting the null hypothesis, the χ2 tests yield an average value 280 

p=0.70 for the three cases, well above the median expected level for false rejection of the 281 

null hypothesis. The results of the analysis are therefore consistent with the hypothesis 282 

that the annual TC counts are produced by a state-dependent Poisson process, with the 283 

occurrence rate being dictated by two state variables (Niño3.4 and MDR SST). 284 

 285 

Having established the viability of a state-dependent Poisson random model for the 286 

observed TC count data, we assessed the statistical significance of differences in the 287 

estimated conditional occurrence rates μ. There is a clear dependence of μ both on each 288 

of the two state variables separately and on the sub-categorization into the three 289 

‘favorable’, ‘neutral’, and ‘unfavorable’ cases (Table 2). The highest average annual TC 290 

count is found for the ‘favorable’ state (μ≈11), while the lowest (μ≈6) is found for the 291 

‘unfavorable’ state, with all other sub-groupings yielding intermediate values of μ. While 292 

differences in occurrence rate (Table 3) are highly significant conditioning on either one 293 

of the two state variables (Niño3.4 or MDR SST) alone, the most significant difference 294 

(i.e., lowest p value) is observed conditioning on both state variables (i.e., the 295 

‘unfavorable’ vs. ‘favorable’ categories).  Partitioning into the ‘favorable’, ‘neutral’, and 296 

‘unfavorable’ categories yields both individual distributions that as noted earlier are on 297 

average consistent with Poisson, and mean TC occurrence rates that differ significantly 298 

between any two categories (Table 3).  The MSE (Table 4) using the conditional means 299 
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from the binary classification approach (MSE=10.80 for the full 1870-2004 model 300 

development interval, and MSE=11.79 in cross-validation) represents a significant 301 

improvement over climatology (MSE=13.75) or persistence (MSE=19.89).  The cross-302 

validation results, however, suggest that the binary classification approach gives 303 

moderately less predictive skill than the Poisson regression approach, as discussed in 304 

more detail below. 305 

 306 

b. Poisson Regression 307 

We performed univariate Poisson regression alternatively using (i) MDR SST and (ii) 308 

Niño3.4 as state variables, (iii) bivariate regression using both MDR SST and Niño3.4 as 309 

state variables, and (iv) multivariate regression using all three climate state variables 310 

MDR SST, Niño3.4, and NAO (Figure 3a).  Cross-validated resolved variance R2 and 311 

MSE scores were similar to the scores obtained from the full model development interval 312 

1870-2004, and far superior to either climatology or persistence, indicating significant 313 

skill in each of the regression models. Interestingly, the predictive skill systematically 314 

increases while the consistency of residuals (see Figure 3b) with a Poisson distribution 315 

decreases as additional state variables are added to the regression—i.e., first MDR only, 316 

then MDR and Niño3.4, and finally MDR, Niño3.4 and NAO (Table 4).  Improved skill 317 

thus appears to come at a cost of increased bias in the conditional TC rate estimates.  318 

 319 

Each of the Poisson regression models are seen to improve significantly (as measured by 320 

both full 1870-2004 model development interval and cross-validation MSE scores) over 321 

climatology (Table 4). Moreover, both bivariate and three variable Poisson regression 322 
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models yield significant improvements (as measured by MSE scores) over the binary 323 

classification approach with MDR SST and Niño3 outlined in section 4a. This further 324 

suggests a tendency for a tradeoff between resolved variance (as determined from 325 

regression and validation R2 and MSE scores) and bias (as determined from the 326 

distribution of residuals) in modeling TC counts.   While the binary classification 327 

approach yielded the greatest consistency with a pure state-dependent Poisson process (as 328 

conditional distributions were consistent with Poisson at a mean level p=0.70), it also 329 

produced the least resolved variance in modeling annual TC counts by conditioning on 330 

two or more climate state variables.  331 

 332 
c. Predictions 333 

The binary classification approach to modeling TC numbers yields a simple forecasting 334 

scheme for seasonal TC counts. Depending on the forecast values for the two state 335 

variables (MDR ASO SST and DJF Niño3.4 anomalies) at the start of the tropical 336 

cyclone season (June 1st), the predicted TC total would be μ=6±3 (i.e., between 3 and 9) 337 

for ‘unfavorable’ anomaly combinations, μ=9±3 (between 6 and 12) for ‘neutral’ 338 

anomaly combinations, and μ=11±3 (between 8 and 14) for ‘favorable’ anomaly 339 

combinations.  It is instructive to interpret the two most recent (2005 and 2006) Atlantic 340 

tropical storm seasons in this context. The TC count for the 2006 season (n=10) was 341 

consistent with the predicted count (m=9±3) given the observed ‘neutral’ conditions 342 

(positive MDR SST anomaly and positive 2006/2007 DJF Niño3.4 anomaly—see Table 343 

5). The 2005 TC count (n=28) is considerably more difficult to explain, even given the 344 

‘favorable’ (positive 2005 MDR SST and negative 2005/2006 DJF Niño3.4) observed 345 
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conditions, for which the predicted count is m=11±3. Given a mean expected rate μ=11, 346 

the probability of equaling or exceeding a TC count of n=28 is ≈0.01%, i.e. implausible. 347 

 348 

The Poisson regression models all successfully predict the 2006 TC count within 349 

estimated uncertainties, but like the binary classification approach, all significantly 350 

under-predict the  historic 2005 TC total of n=28 storms (Table 5, and also Figure 3a).  351 

However, the most skillful of the Poisson regression models as judged by cross-352 

validation results (i.e., Table 3)—the three state variable model—comes closest to the 353 

observed total with a predicted TC count of m=18±4   The high predicted total in this 354 

case is a result of simultaneously favorable conditions  in all three state variables 355 

(anomalously warm MDR ASO SSTs, La Nina conditions in the tropical Pacific, and a 356 

substantially negative phase NAO).  Given a conditional expected mean rate μ=18, the 357 

probability of observing or exceeding n=28 storms is approximately 2%. In other words, 358 

for every 50 years with conditions similar to those observed for 2005, a TC count as high 359 

or higher than that observed might be expected given the three variable Poisson 360 

regression model. In this case, the 2005 TC total is still observed to be improbable, but 361 

not entirely implausible. It is of course possible that the true distribution of TC 362 

occurrence is heavy-tailed, in which case the probability of very large counts might be 363 

substantially greater than estimated under the assumption of conditional Poisson 364 

statistics. One could conceivably also argue that biases in the earlier data [e.g., Landsea, 365 

2005] leads to an underestimation of the frequency of very large annual counts such as 366 

observed in 2005. However, our finding in section a that long-term TC data are 367 

essentially consistent with  random Poisson statistics after controlling for dependence on 368 
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two climate state variables, would seem to argue against the proposition that systematic 369 

biases compromise the reliability of the earlier data [Landsea, 2005].     370 

 371 

Finally, we use the statistical models developed above to forecast Atlantic TC counts for 372 

the 2007 tropical storm season. At the time this manuscript was finalized, weak La Nina 373 

conditions (Nino3.4 = -0.2) were predicted by NCEP for winter 2007/2008. MDR SST 374 

anomalies were currently similar to those observed for the 2005 season, so we infer by 375 

persistence ASO MDR SST anomalies equal to those for the 2005 season. As there is no 376 

basis for forecasting the winter 2007/2008 NAO value, we assume climatological mean 377 

DJFM conditions (NAO index=0.47).  Given these assumed values, the binary 378 

classification approach yields the ‘favorable’ forecast m=11±3, while each of the Poisson 379 

regression models (with the exception of the Niño3.4-only regression which yields a 380 

forecast m=11±3) predict a total of m=15±4 storms for the 2007 tropical storm season. 381 

 382 

5.  Conclusions 383 

 384 

Two different methods, a binary classification scheme and Poisson regression, are used to 385 

condition expected annual TC counts on  climate state variables. Modeling annual 386 

Atlantic TC counts as a state-dependent Poisson process using the binary classification 387 

approach, we find that two climatic factors, ENSO and tropical North Atlantic MDR 388 

SST, are adequate to explain the apparent non-random variability in historical variations 389 

in Atlantic TC numbers.  Modeling TC counts instead using Poisson regression, we find 390 

that the most skillful statistical model employs all three state variables considered in the 391 

study, ENSO, tropical North Atlantic MDR SST, and the NAO, as predictors. This three 392 



 19

variable statistical model also comes closest to predicting the historic 2005 TC count of 393 

18, ascribing unlike the other statistical models developed in this study, a non-trivial 394 

probability for that event given the climate state of 2005. However, analysis of residuals 395 

also indicates some evidence of bias, implying the need for cautious use of the model. 396 

Three of the four Poisson regression models developed in the study predict 15±4 storms 397 

for the 2007 Atlantic tropical storm season. 398 

 399 
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TABLE CAPTIONS 487 
 488 
 489 
Table 1. Results of reduced χ2 tests described in text. Indicated are reduced χ2 value 490 

(χ2/ν), degrees of freedom ν and the p value for rejection of the null hypothesis of a 491 

Poisson distribution.  492 

 493 

Table 2.  Estimates of occurrence rate μ for the various TC data sub-groupings discussed 494 

in text. Provided are the sample sizes N and, where appropriate, the effective sample size 495 

φ accounting for temporal autocorrelation in state variables. 496 

 497 

Table 3.  Results of t tests for differences of occurrence rates μ among the different sub-498 

groupings discussed in text. Indicated are the effective degrees of freedom in the t 499 

statistic Φ=min(φ1, φ2)-1, and the one-tailed p value for rejection of the null hypothesis of 500 

equal means.  501 

 502 

Table 4.  Assessments of predictive skill for competing statistical models considered in 503 

this study. Mean square error (MSE) over the full model development period (1870-504 

2004) is indicated for each case. The MSE for simple (i) climatological mean and (ii) 505 

persistence predictions is provided for comparison.  In the case of Poisson regression 506 

models, the coefficient of determination (R2) is also provided.  Validation MSE and R2 507 

scores are based on the split calibration/validation procedures described in the text.   508 

 509 
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Table 5.  Climate state variable values and associated annual TC count predictions m and 510 

associated one standard error uncertainties ±√m for 2005-2007.  2007 climate variables 511 

are forecast based on the procedure described in the text.   512 
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FIGURE CAPTIONS 513 
 514 
 515 

Figure 1. Time Series (1870-2004) of (a) annual Atlantic TC counts, (b) MDR ASO SST 516 

time series, (c) Niño3.4 DJF SST index, and (d) NAO DJFM SLP index.  Red (blue) 517 

indicates positive (negative) anomalies in TC counts and Hurricane-favorable 518 

(unfavorable) conditions in the three indices (MDR SST, Niño3.4 and NAO). Note that 519 

year convention applies to the ‘D’ in DJF and DJFM for both ‘c’ and ‘d’. 520 

 521 

Figure 2.  Histograms of TC counts n  vs. bin centers (blue) with associated one standard 522 

deviation uncertainties  (±√ n, yellow shading) and best-fit Poisson distributions (red). 523 

Results are shown for unconditional case (all data—panel a) and the ‘favorable, ‘neutral’, 524 

and ‘unfavorable’ sub-groupings discussed in the text (panels b-d). Bin bandwidths were 525 

determined as discussed in text.   526 

 527 

Figure 3. Poisson regression models of annual Atlantic TC counts using the MDR ASO 528 

SST, Niño3.4, and NAO series as predictors.  Shown are (a) the statistical model fits over 529 

1870-2004 based on the two univariate, bivariate and three-variable Poisson regressions 530 

(colored curves) along with the observed TC counts for 1870-2004 (black curve), 531 

observed TC counts for 2005 and 2006 (filled black circles), predicted TC counts for 532 

2005 and 2006 (unfilled colored symbols) and 2007 (filled colored symbols).  (b) Poisson 533 

regression residuals as defined in text (colored curves) along with the observed TC 534 

counts for 1870-2004 (black curve).   535 

 536 



 26

 537 
 538 
Table 1 539 
 540 

Scenario (1870-2004) χ2/ν ν p 
All Years 2.09 9 0.027

+MDR SST 0.59 8 0.79 
-MDR SST 1.32 3 0.25 
+Nino3.4 1.02 8 0.42 
-Nino3.4 2.29 7 0.025

+MDR/-Nino (‘Favorable’) 1.27 6 0.27 
-MDR/+Nino (‘Unfavorable’) 0.28 9 0.98 

+MDR/+Nino or –MDR/-Nino (‘Neutral’) 0.49 7 0.85 
 541 
Table 2 542 
 543 

Scenario (1870-2004) μ N φ 
All Years 8.85 135  

+MDR SST 10.33 64 28 
-MDR SST 7.52 71 31 
+Nino3.4 7.78 58  
-Nino3.4 9.66 77  

+Nino/+MDR (‘Favorable’) 10.94 35 20 
-MDR/+Nino (‘Unfavorable’) 5.97 29 20 

+MDR/+Nino or –MDR/-Nino (‘Neutral’) 9 71 33 
 544 
Table 3 545 
 546 

Scenario (1870-2004) t Φ p 
+MDR SST vs. -MDR SST 3.59 27 0.0006 

+Nino3.4 vs. -Nino3.4 3.70 57 0.0002 
Favorable vs. Unfavorable 5.41 19 < 0.0001 

Favorable vs. Neutral 2.15 19 0.02 
Neutral vs. Unfavorable 4.02 19 0.0004 

 547 
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Table 4 548 
 549 

Model/Predictors R2 full MSE full R2 valid. MSE valid p resid. 
Climatology 0.00 13.75    
Persistence 0.07 19.89    

Binary Cond: MDR,Nino  10.80  11.79  
 Poisson Reg: MDR 0.24 10.81 0.16 10.47 0.83 
Poisson Reg: Nino 0.10 12.51 0.12 12.31 0.08 

Poisson Reg: MDR,Nino 0.33 9.37 0.26 9.95 0.35 
Poisson Reg: MDR, Nino,NAO 0.38 8.70 0.32 9.02 0.00 

 550 
 551 
 552 
Table 5 553 

 554 
year model MDR Nino3.4 NAO predicted (n) observed (m) 
2005 Binary Conditioning + - x 11±3 28 

 Poisson Regression x -0.65 x 10±3  
  28.87C x x 15±4  
  28.87C -0.65 x 16±4  
  28.87C -0.65 -0.82 18±4  

2006 Binary Conditioning + + x   9±3 10 
 Poisson Regression x 0.72 x   8±3  
  28.35C x x 10±3  
  28.35C 0.72 x   9±3  
  28.35C 0.72 2.43   8±3  

2007 Binary Conditioning + - x 11±3 To be determined 
 Poisson Regression x -0.2* x 10±3  
  27.9C* x x 15±4  
  27.9C* -0.2* x 15±4  
  27.9C* -0.2* 0.47* 15±4  

  *predicted value 555 
 556 
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FIGURE 1 559 
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