1	The Influence of Climate State Variables on Atlantic Tropical Cyclone Occurrence
2	Rates
3	
4	Thomas A. Sabbatelli
5	Michael E. Mann
6	
7	Department of Meteorology and Earth and Environmental Systems Institute,
8	Pennsylvania State University, University Park, PA, USA
9	
10	JGR-Atmosphere (in press), April 24 2007
11	

12 13 Abstract 14 We analyzed annual North Atlantic tropical cyclone (TC) counts from 1871-2004, 15 considering three climate state variables-the El Niño/Southern Oscillation (ENSO), 16 peak (Aug-Oct or 'ASO') Sea Surface Temperatures (SST) over the main development region ('MDR': 6-18° N, 20-60° W), and the North Atlantic Oscillation (NAO)-thought 17 18 to influence variations in annual TC counts on interannual and longer timescales. The 19 unconditional distribution of TC counts is observed to be inconsistent with the null 20 hypothesis of a fixed rate random (Poisson) process. However, using two different 21 methods, we find that conditioning TC counts on just two climate state variables, ENSO 22 and MDR SST, can account for much or all of the apparent non-random variations over 23 time in TC counts. Based on statistical models of annual Atlantic TC counts developed in 24 this study and current forecasts of climate state variables, we predicted $m=15\pm4$ total named storms for the 2007 season. 25

1. Introduction

28	A number of past studies have examined climatic influences on variations at interannual
29	and longer timescales in the occurrence and the intensity of North Atlantic Tropical
30	Cyclones (TCs) [e.g. Gray, 1984]. The primary factor considered in past studies is the El
31	Niño/Southern Oscillation (ENSO) [e.g. Bove et al, 1998; Landsea et al, 1999; Elsner et
32	al, 2000; Elsner 2003; Elsner et al, 2006; Elsner and Jagger, 2006], though the
33	influence of the North Atlantic Oscillation ("NAO") has also been examined in some
34	studies [Elsner et al, 2000; Elsner 2003; Elsner et al, 2006; Elsner and Jagger, 2006].
35	Both phenomena are believed to influence TC production, development, or prevailing
36	trajectories through their influence on storm tracks or vertical wind shear in the tropical
37	North Atlantic. The ENSO phenomenon tends to enhance (diminish) TC counts during
38	storm seasons coinciding with an incipient La Nina (El Niño) event, while the NAO tends
39	to enhance (diminish) TC counts during storm seasons coinciding with an incipient
40	negative (positive) phase winter. Influences are historically found only during the storm
41	season <i>preceding</i> the anomaly in the index; there is no detectable impact on the following
42	year's storm season.

Sea Surface Temperatures (SST) over the main development region ('MDR': 6-18N, 2060W) for North Atlantic TCs during the season (Aug-Oct or 'ASO') of Peak TC
production [*Emanuel*, 2005a; *Webster et al*, 2005;2006 *Mann and Emanuel*, 2006; *Sriver and Huber*, 2006; *Elsner* 2006] have also been argued to be an important influence on
long-term North Atlantic TC behavior. MDR SSTs are considered a proxy for potential

49	TC intensity [Emanuel, 2005a], with annual TC counts enhanced (diminished) in seasons
50	associated with positive (negative) MDR SST anomalies. Related studies have argued for
51	a significant influence of the so-called "Atlantic Multidecadal Oscillation" ("AMO") on
52	North Atlantic TC numbers [e.g. Goldenberg et al, 2001]. However, as the procedures
53	used to define the "AMO" signal in terms of North Atlantic SSTs in such studies has
54	been challenged in recent work [Trenberth and Shea, 2006; Mann and Emanuel, 2006],
55	we have chosen in our analyses here to employ MDR ASO SSTs themselves [as in e.g.
56	Emanuel, 2005; Mann and Emanuel, 2006; Elsner, 2006], rather than an index such as
57	the "AMO" derived through statistical processing of the North Atlantic SST field.
58	
59	Previous studies have investigated long-term trends in TC statistics [e.g. Solow and
60	Moore, 2000] or have used regression models employing climatic indices [Gray 1984;
61	Elsner et al, 2000; 2006; Elsner and Jagger, 2006] and trend parameters [Elsner 2003] to
62	predict interannual variations in TC activity. In no previous studies we are aware of,
63	however, have investigators examined whether conditioning on climatic factors can
64	account for the entirety of non-random structure in the statistical distribution of historical
65	North Atlantic annual TC counts. In this study we perform such an examination,
66	employing two distinct and complementary methods to test the hypothesis that annual TC
67	counts follow a state-dependent Poisson process against the null hypothesis of a constant
68	rate Poisson random process.
69	
70	Any statistical approach to analyzing TC counts must respect the Poisson distributional

71 nature of the underlying process (that is, that TC counts are characterized by a point

72 process with a low occurrence rate). Our first approach employs Poisson regression [see 73 e.g. Elsner et al, 2000; 2001; Elsner, 2003; Elsner and Jagger, 2006], a variant on linear 74 regression which is appropriate for modeling a conditional Poisson process in which the 75 expected occurrence rate co-varies with some set of state variables (e.g. indices of 76 ENSO, the NAO, and MDR SST). The second approach categorizes the data with 77 respect to the climate state variables using a binary classification scheme, testing both 78 for the statistical significance of differences in occurrence rates between the resulting 79 data subgroups, and examining the resulting subgroup distributions for consistency with a 80 Poisson random process. The two methods are complementary in that the latter method 81 avoids the restrictive linearity assumptions implicit in regression, while the former 82 method accounts for continuous variations in expected TC occurrence rates as a function 83 of the underlying state variables (e.g. distinguishing between the impacts of strong vs. 84 weak El Nino events).

85

86 **2. Data**

Our analysis employed four datasets including (1) historical annual North Atlantic TC counts, (2) the Dec-Feb (DJF) Niño3.4 SST ENSO index, (3) the Dec-Mar (DJFM) NAO index, and (4) Aug-Oct (ASO) seasonal SST means over the main development region ("MDR") of 6°–18°N, 20°–60°W. Our analysis was confined to the 135 year interval 1870-2004 over which all three primary datasets of interest were available. The more recent seasons of 2005 and 2006 for which preliminary data are available, are subsequently interpreted in the context of these analyses, while forecasts for the 2007

- season are made based on projected values of the climate indices. Data are available at
 the supplementary website: http://www.meteo.psu.edu/~mann/TC_JGR07

98	Historical estimates of the annual TC counts are available back to 1850 [Jarvinen et al,
99	2005]. The reliability of these data, particularly prior to the late 20 th century in which
100	satellite and aircraft reconnaissance are available, has been vigorously debated in recent
101	studies [e.g. Landsea, 2005; Emanuel 2005b]. Emanuel [2005b] nonetheless makes a
102	credible argument for why long-term TC count data should be reliable, even if TC
103	intensity estimates are not. As Emanuel [2005b] notes, prior to aircraft reconnaissance,
104	ships crossing the Atlantic would not have been warned off from a developing or
105	approaching storm, and were likely to encounter either the storm or evidence of its
106	existence. Combined with other impacts on islands or coastal localities, the existence of
107	an Atlantic tropical cyclone was therefore likely to have been known, even prior to
108	aircraft reconnaissance.

Various alternative indices of the El Nino/Southern Oscillation (ENSO) are available. We
employed the boreal winter (DJF) Niño3.4 index (SST averaged over the region 5°S-5°N,
120'-170'W) favored by many investigators [e.g. *Trenberth*, 1997]. Use of alternative
(e.g. Niño3) ENSO indices yielded similar conclusions. The Niño3.4 index was taken
from the *Kaplan et al* [1998] dataset and updated with subsequent values available
through NCEP. The boreal winter (DJFM) NAO index was taken from *Jones et al*[1997], updated with more recent values from the University of East Anglia/CRU. For

117	simplicity, the 'year' was defined to apply to the preceding storm season for both indices
118	(e.g. the 1997/1998 El Nino and winter 1997/1998 NAO value were assigned the year
119	1997).

121	The MDR	SST index w	as taken fro	m the HadIS	ST2 observa	ational SST	dataset [R	ayner et
-----	---------	-------------	--------------	-------------	-------------	-------------	------------	----------

al., 2003] and updated with more recent values from the UK Met Office. The data were

123 averaged over the season most relevant to tropical cyclone formation (August-September-

124 October, or "ASO"). Estimated uncertainties in the observational SST data are relatively

small back to 1870 for both the Nino3.4 and North Atlantic regions of interest in this

126 study [see e.g. Kaplan et al, 1998].

127

```
128 3. Methods
```

129

As in previous studies [e.g. *Elsner et al*, 2000], we assumed that annual TC counts *n* can
be modeled as a (Poisson) point process, viz.

132 $P_i(n) = (1/n!) \mu^n \exp(-\mu)$ (1)

133 where the mean occurrence rate μ , is the sole free parameter of the distribution, and in the

134 unconditional case has a Maximum Likelihood value equal to the mean annual count.

135 While the appropriate null hypothesis holds the rate parameter μ to be constant over

136 time, it is of interest to investigate the alternative hypothesis that μ may vary with

- 137 respect to some set of governing factors or 'state variables' [e.g. time—Solow and
- 138 Moore, 2000, Elsner 2003 and/or climate state indices—e.g. Elsner, 2003; Elsner and
- 139 Jagger, 2006].

141	For the purposes of our study, μ was conditioned on the three climate state variables
142	discussed above (ENSO as measured by the DJF Niño3.4 index, NAO as measured by,
143	the DJFM NAO index, and MDR SST as measured by the MDR ASO SST index). Two
144	distinct statistical approaches were taken, as described below. We note that here is room
145	for further development of the methods presented below. For example, one could extend
146	the approaches used in the present study to account explicitly for the increased
147	uncertainty in TC counts back in time, and in particular the impact of unreported events
148	[e.g. as in Solow and Moore, 2000; Elsner and Jagger, 2006].
149	
150	a. Binary Classification Approach
151	In this approach, each year is classified as belonging to one of two possible binary states
152	(positive or negative) with respect to each state variable, depending on sign of the
153	anomaly in that variable (relative to the 1870-2004 mean). An alternative tertiary
154	classification procedure was tested in which a third neutral category was introduced
155	(defined by absolute anomalies within one standard deviation). The choice of binary vs.
156	tertiary classification schemes represents a tradeoff between the level of discrimination
157	(two vs. three states) and resulting sample sizes. While similar results were obtained
158	using the tertiary categorizations scheme, we preferred the binary classification scheme
159	due to the larger sizes of the data sub-samples. For similar reasons, only the two most
160	significant (see section 4 for further discussion) of the three state variables, MDR SST
161	and Niño3.4 were used.
162	

163	Using the binary classification scheme, we categorized years with respect to each of the
164	two factors separately, and further, into three distinct sub-groupings, defined as (1)
165	'favorable': years in which both factors are favorable to TC production (positive MDR
166	SST and negative Niño3.4 anomalies), (2) 'unfavorable': years in which both factors are
167	unfavorable to TC production (negative MDR SST and positive Niño3.4 anomalies), and
168	(3) 'neutral': years in which the two factors tend to offset in terms of their favorability to
169	TC formation, i.e. anomalies in MDR SST and Niño3.4 that are of the same sign.
170	
171	We used a χ^2 test to evaluate the goodness-of-fit of a Poisson distribution for both the
172	unconditional (i.e., all 135 years grouped together) and conditional (i.e., 'favorable,
173	'neutral', and 'unfavorable') data categorizations. We assumed χ^2 to have v=B-2 degrees
174	of freedom, where B is the number of occupied bins, and 2 degrees of freedom are
175	subtracted based on constraints provided from the data (normalization of the distribution,
176	and estimation of the rate parameter μ). The bin bandwidth was chosen using the
177	objective criterion cited by Wilks [2005],
178	$h \approx c \ IQR/N^{1/3} (2)$
179	where N is the sample size, IQR is the inter-fourth quartile range of the data, and $c=2$ is
180	taken for relatively skew distributions such as the Poisson. h was rounded to the nearest
181	integer value.
182	
183	The <i>t</i> statistic was then used to evaluate the statistical significance of the differences in
184	TC rate parameter estimates μ_i between any two data sub-samples. The <i>t</i> statistic reduces
185	to

186
$$t = (\mu_1 - \mu_2)/(\mu_1/\phi_1 + \mu_2/\phi_2)^{1/2} \quad (3)$$

187	using the expression for the sample variance of a Poisson distribution, $\sigma^2 = \mu$, where
188	ϕ_1 and ϕ_2 denote the degrees of freedom in the respective sub-samples, and the degrees of
189	freedom in the <i>t</i> statistic is min(ϕ_1, ϕ_2)-1. When only Niño3.4—which is serially
190	uncorrelated—is used as a conditioning variable, ϕ_1 and ϕ_2 reduce to simply N_1 and N_2 ,
191	the nominal sizes of the respective sub-samples. However, significant serial correlation
192	in the MDR SST series (the lag one autocorrelation coefficient ρ =0.55 yields a
193	decorrelation timescale τ =1.67 years) decreases the effective number of independent
194	climate states sampled when conditioning on MDR SST as e.g. two neighboring years are
195	not statistically independent with respect to the enhanced likelihood of elevated TC
196	counts. Reduced degrees of freedom (ϕ) were therefore taken into account in estimating
197	the statistical significance of <i>t</i> scores when conditioning fully or partly on the MDR SST
198	series. In such cases, only events spaced more than two decorrelation timescales (i.e., 3
199	years) apart were considered to constitute statistically independent samples.
200	
201	Finally, we used a cross-validation procedure to evaluate the predictive skill in the binary
202	conditional Poisson model approach. One could [see e.g. Elsner and Jagger, 2006]
203	leave each year out one at a time, forming conditional TC rate parameter estimates based
204	on the remaining years and evaluating the skill of the resulting classifications applied to
205	each choice of missing year. However, when serial correlation is present in the state
206	variables, which as discussed above is the case here, the results of such a cross-validation
207	procedure are likely to give a too liberal an estimate of skill. We therefore employed an
208	alternative split calibration/validation procedure. Conditional TC rate parameter estimates

209	were obtained using the first half (i.e., years 1870-1937) of the data, and subsequently
210	used to categorize the subsequent TC count data based on the climate state variable
211	anomalies (measured relative to the calibration period baseline) over the latter half (i.e.,
212	years 1943-2004). This procedure was then repeated with the role of the first and last half
213	of the datasets reversed. The average of the mean-squared error (MSE) between the
214	predicted and observed TC count data obtained for both sub-intervals was used as an
215	estimate of cross-validated MSE, which was compared to the MSE obtained over the full
216	(1870-2004) model development interval.
217	
218	b. Poisson Regression
219	Poisson regression is a variant on linear regression appropriate for data such as TC counts

for which the null hypothesis of a Poisson distribution is appropriate [see *Elsner et al*,

221 2000; 2001; Elsner, 2003; Elsner and Jagger, 2006 for further discussion]. Given a count

222 series Y with unconditional mean rate μ believed to follow a state-dependent Poisson

223 distribution, Poisson regression estimates a generalized linear model for the conditional

224 expected rate of occurrence $\lambda = E(Y)$ as a function of a set of state variables $X_1, X_2, ..., X_{M_r}$

of the form,

$$\log \lambda = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_M X_M \quad (4)$$

or alternatively,

228
$$\lambda = \exp[\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_M X_M] (5)$$

where the residuals are assumed to be Poisson distributed.

230

231	Unlike ordinary linear regression, a closed-form analytical solution to eq. 5 is not
232	possible. However, it is straightforward to numerically estimate maximum likelihood
233	values for the regression parameters β_i , and thus an estimate for the conditional expected
234	occurrence rates λ_i . The residual series $\varepsilon_i = Y_i - \lambda_i + \mu$ can be analyzed for consistency
235	with a Poisson distribution based on a χ^2 test, as described in section 'a' above.
236	
237	Poisson regression was performed for various combinations of climate state variables as
238	discussed in more detail in section 4. Cross-validation was performed using the split
239	calibration/validation procedure discussed in section 'a' wherein the regressions were

1.0

1 .. 1 1 ..

– ·

performed alternatively using the first and last half of the full data set, with TC counts predicted and compared with observed counts over the remaining independent half of the data set. Quality of regression fit was measured by both the coefficient of determination R^2 and mean square error (MSE).

244

245 **4. Results**

TT 1'1

A A 1

1.

1.

.

1

246

Certain relationships between annual TC counts and the Niño3.4 and MDR SST time series are evident by inspection alone (Figure 1). The clear increase in TC counts subsequent to the 1920s, and the positive trend over roughly the past decade, closely coincide with corresponding tendencies for positive MDR SST anomalies. Anomalously low TC counts in certain years (e.g. 1982 and 1997) correspond to prominent El Niño years, and the low TC counts of the early 1990s correspond to general tendency for El Niño-like conditions. The NAO has a weaker, but nonetheless statistically significant

254	impact on TC counts, with a tendency for elevation of counts during negative NAO years.
255	The Pearson correlation coefficients between the TC counts and the three predictors
256	($r=0.48$ for MDR SST, $r=-0.32$ for Niño3.4, and $r=-0.25$) are statistically significant at
257	the $p < 0.0001$, $p = 0.0001$, and $p = 0.003$ levels respectively for a two-sided hypothesis test,
258	taking into account the serial correlation in each series. The extent to which these state
259	variables can account for the non-random structure in long-term TC counts is investigated
260	below using each of the two methods discussed in section 3.

261

262 a. Binary Classification Approach

263 We first note that the unconditional distribution of TC counts is highly inconsistent with the null hypothesis of a random Poisson process. Based on a χ^2 test (Table 1) we reject at 264

the p < 0.05 level the null hypothesis of a Poisson process for the entire TC count record 265

266 1870-2004. By inspection (Figure 3, panel a), it is clear that there is bimodality in the

267 distribution which cannot be captured by the model of a constant mean Poisson process.

268

269 Conditioning on ENSO influences (i.e. on Niño3.4) alone does not ameliorate this

270 problem, as the conditional distributions for negative Niño3.4 values (i.e. 'La Nina'-like

271 behavior) is still observed (Table 1) to be inconsistent (p < 0.05) with a Poisson

272 distribution. Conditioning on MDR SST provides significant improvement, though the p

273 values (*p*=0.79 and *p*=0.25 for +MDR SST and –MDR SST respectively) average only

274 just above the median (p=0.5) level between acceptance and rejection of the null

275 hypothesis. However, when TC counts are simultaneously conditioned on both Niño3.4

276 and MDR SST, we find that the null hypothesis can likely not be rejected. The resulting

277	three separate distributions ('favorable', 'neutral', and 'unfavorable', as defined in
278	section 3a) are generally well captured by a Poisson distribution (Figure 3, panels b - d).
279	While in one of the three cases ('favorable') the p value ($p=0.27$) indicates a moderate
280	27% chance of falsely rejecting the null hypothesis, the χ^2 tests yield an average value
281	p=0.70 for the three cases, well above the median expected level for false rejection of the
282	null hypothesis. The results of the analysis are therefore consistent with the hypothesis
283	that the annual TC counts are produced by a state-dependent Poisson process, with the
284	occurrence rate being dictated by two state variables (Niño3.4 and MDR SST).
285	
286	Having established the viability of a state-dependent Poisson random model for the
287	observed TC count data, we assessed the statistical significance of differences in the
288	estimated conditional occurrence rates μ . There is a clear dependence of μ both on each
289	of the two state variables separately and on the sub-categorization into the three
290	'favorable', 'neutral', and 'unfavorable' cases (Table 2). The highest average annual TC
291	count is found for the 'favorable' state ($\mu \approx 11$), while the lowest ($\mu \approx 6$) is found for the
292	'unfavorable' state, with all other sub-groupings yielding intermediate values of μ . While
293	differences in occurrence rate (Table 3) are highly significant conditioning on either one
294	of the two state variables (Niño3.4 or MDR SST) alone, the most significant difference
295	(i.e., lowest p value) is observed conditioning on both state variables (i.e., the
296	'unfavorable' vs. 'favorable' categories). Partitioning into the 'favorable', 'neutral', and
297	'unfavorable' categories yields both individual distributions that as noted earlier are on
298	average consistent with Poisson, and mean TC occurrence rates that differ significantly
299	between any two categories (Table 3). The MSE (Table 4) using the conditional means

from the binary classification approach (MSE=10.80 for the full 1870-2004 model development interval, and MSE=11.79 in cross-validation) represents a significant improvement over climatology (MSE=13.75) or persistence (MSE=19.89). The crossvalidation results, however, suggest that the binary classification approach gives moderately less predictive skill than the Poisson regression approach, as discussed in more detail below.

306

307 b. Poisson Regression

308 We performed univariate Poisson regression alternatively using (i) MDR SST and (ii) 309 Niño3.4 as state variables, (iii) bivariate regression using both MDR SST and Niño3.4 as 310 state variables, and (iv) multivariate regression using all three climate state variables MDR SST, Niño3.4, and NAO (Figure 3a). Cross-validated resolved variance R^2 and 311 312 MSE scores were similar to the scores obtained from the full model development interval 313 1870-2004, and far superior to either climatology or persistence, indicating significant 314 skill in each of the regression models. Interestingly, the predictive skill systematically 315 increases while the consistency of residuals (see Figure 3b) with a Poisson distribution 316 decreases as additional state variables are added to the regression—i.e., first MDR only, 317 then MDR and Niño3.4, and finally MDR, Niño3.4 and NAO (Table 4). Improved skill 318 thus appears to come at a cost of increased bias in the conditional TC rate estimates. 319 320 Each of the Poisson regression models are seen to improve significantly (as measured by

both full 1870-2004 model development interval and cross-validation MSE scores) over

322 climatology (Table 4). Moreover, both bivariate and three variable Poisson regression

323	models yield significant improvements (as measured by MSE scores) over the binary							
324	classification approach with MDR SST and Niño3 outlined in section 4a. This further							
325	suggests a tendency for a tradeoff between resolved variance (as determined from							
326	regression and validation R^2 and MSE scores) and bias (as determined from the							
327	distribution of residuals) in modeling TC counts. While the binary classification							
328	approach yielded the greatest consistency with a pure state-dependent Poisson process (as							
329	conditional distributions were consistent with Poisson at a mean level $p=0.70$), it also							
330	produced the least resolved variance in modeling annual TC counts by conditioning on							
331	two or more climate state variables.							
332 333	c. Predictions							
334	The binary classification approach to modeling TC numbers yields a simple forecasting							
335	scheme for seasonal TC counts. Depending on the forecast values for the two state							

336 variables (MDR ASO SST and DJF Niño3.4 anomalies) at the start of the tropical

337 cyclone season (June 1st), the predicted TC total would be μ =6±3 (i.e., between 3 and 9)

for 'unfavorable' anomaly combinations, $\mu=9\pm3$ (between 6 and 12) for 'neutral'

anomaly combinations, and $\mu=11\pm3$ (between 8 and 14) for 'favorable' anomaly

340 combinations. It is instructive to interpret the two most recent (2005 and 2006) Atlantic

341 tropical storm seasons in this context. The TC count for the 2006 season (n=10) was

342 consistent with the predicted count ($m=9\pm3$) given the observed 'neutral' conditions

343 (positive MDR SST anomaly and positive 2006/2007 DJF Niño3.4 anomaly—see Table

- 5). The 2005 TC count (n=28) is considerably more difficult to explain, even given the
- 345 'favorable' (positive 2005 MDR SST and negative 2005/2006 DJF Niño3.4) observed

conditions, for which the predicted count is *m*=11±3. Given a mean expected rate µ=11,
the probability of equaling or exceeding a TC count of *n*=28 is ≈0.01%, i.e. implausible.

349	The Poisson regression models all successfully predict the 2006 TC count within
350	estimated uncertainties, but like the binary classification approach, all significantly
351	under-predict the historic 2005 TC total of $n=28$ storms (Table 5, and also Figure 3a).
352	However, the most skillful of the Poisson regression models as judged by cross-
353	validation results (i.e., Table 3)-the three state variable model-comes closest to the
354	observed total with a predicted TC count of $m=18\pm4$ The high predicted total in this
355	case is a result of simultaneously favorable conditions in all three state variables
356	(anomalously warm MDR ASO SSTs, La Nina conditions in the tropical Pacific, and a
357	substantially negative phase NAO). Given a conditional expected mean rate μ =18, the
358	probability of observing or exceeding $n=28$ storms is approximately 2%. In other words,
359	for every 50 years with conditions similar to those observed for 2005, a TC count as high
360	or higher than that observed might be expected given the three variable Poisson
361	regression model. In this case, the 2005 TC total is still observed to be improbable, but
362	not entirely implausible. It is of course possible that the true distribution of TC
363	occurrence is heavy-tailed, in which case the probability of very large counts might be
364	substantially greater than estimated under the assumption of conditional Poisson
365	statistics. One could conceivably also argue that biases in the earlier data [e.g., Landsea,
366	2005] leads to an underestimation of the frequency of very large annual counts such as
367	observed in 2005. However, our finding in section a that long-term TC data are
368	essentially consistent with random Poisson statistics after controlling for dependence on

- two climate state variables, would seem to argue against the proposition that systematic
 biases compromise the reliability of the earlier data [*Landsea*, 2005].
- 371

372 Finally, we use the statistical models developed above to forecast Atlantic TC counts for 373 the 2007 tropical storm season. At the time this manuscript was finalized, weak La Nina 374 conditions (Nino3.4 = -0.2) were predicted by NCEP for winter 2007/2008. MDR SST 375 anomalies were currently similar to those observed for the 2005 season, so we infer by 376 persistence ASO MDR SST anomalies equal to those for the 2005 season. As there is no 377 basis for forecasting the winter 2007/2008 NAO value, we assume climatological mean 378 DJFM conditions (NAO index=0.47). Given these assumed values, the binary 379 classification approach yields the 'favorable' forecast $m=11\pm3$, while each of the Poisson 380 regression models (with the exception of the Niño3.4-only regression which yields a 381 forecast $m=11\pm3$) predict a total of $m=15\pm4$ storms for the 2007 tropical storm season. 382

383 5. Conclusions

384

385 Two different methods, a binary classification scheme and Poisson regression, are used to 386 condition expected annual TC counts on climate state variables. Modeling annual 387 Atlantic TC counts as a state-dependent Poisson process using the binary classification 388 approach, we find that two climatic factors, ENSO and tropical North Atlantic MDR 389 SST, are adequate to explain the apparent non-random variability in historical variations 390 in Atlantic TC numbers. Modeling TC counts instead using Poisson regression, we find 391 that the most skillful statistical model employs all three state variables considered in the 392 study, ENSO, tropical North Atlantic MDR SST, and the NAO, as predictors. This three

393	variable statistical model also comes closest to predicting the historic 2005 TC count of
394	18, ascribing unlike the other statistical models developed in this study, a non-trivial
395	probability for that event given the climate state of 2005. However, analysis of residuals
396	also indicates some evidence of bias, implying the need for cautious use of the model.
397	Three of the four Poisson regression models developed in the study predict 15±4 storms
398	for the 2007 Atlantic tropical storm season.
399	
400 401	Acknowledgments:
402	We thank two anonymous reviewers for their helpful comments. We also acknowledge
403	generous financial support (for T.S.) provided by the Pennsylvania State University
404	Schreyer Honor College.
405	
406	References
407	
408	Bove, M.C., J.B. Elsner, C.W. Landsea, X. Niu, and J.J. O'Brien (1998), Effect of El
409	Niño on U.S. Landfalling Hurricanes, Revisited, Bull Am. Met. Soc, 79, 2477-2482
410	
411	Elsner, J.B. (2003), Tracking Hurricanes, Bull Am. Met. Soc, 84, 353-356.
412	
413	Elsner, J.B. (2006), Evidence in Support of the Climate Change: Atlantic Hurricane
414	Hypothesis, Geophys. Res. Lett. 33, L16705, doi:10.1029/2006GL026869.
415	

416	Elsner, J.B.	. B.H. E	Bossak, a	and XF.	Niu (2001).	Secular	changes	in the	ENSO-I	U.S.
-		,				//		23			

- 417 Hurricane Relationship, Geophys. Res. Lett., 28, 4123-4126.
- 418
- 419 Elsner, J.B. and T.H. Jagger (2006), Prediction Models for Annual U.S. Hurricane
- 420 Counts, J. Climate, 19, 2935-2952.
- 421
- 422 Elsner J. B., T. Jagger, and X.-F. Niu (2000), Changes in the rates of North Atlantic
- 423 major hurricane activity during the 20th century, *Geophys. Res. Lett.*, 27, 1743-1746.
- 424
- 425 Elsner, J.B., R.J. Murnane, and T.H. Jagger (2006), Forecasting U.S. hurricanes 6 months

426 in advance, *Geophys. Res. Lett.*, 33, L10704, doi:10.1029/2006GL025693.

- 427
- 428 Emanuel, K. (2005a) Increasing destructiveness of tropical cyclones over the past 30
- 429 years, Nature, 436, 686–688.
- 430
- 431 Emanuel, K. (2005b) Emanuel Replies, *Nature*, 438, E13.
- 432
- 433 Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray (2001), The
- 434 recent increase in Atlantic hurricane activity: Causes and implications, *Science*, 293,
- 435 474–479.

- 437 Gray, W. M. (1984), Atlantic seasonal hurricane frequency, Part I: El Niño and 30 mb
- 438 quasi-biennial oscillation influences. *Mon. Wea. Rev.*, **115**, 1649-1668.

- 440 Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis (1984), A tropical cyclone data tape
- 441 for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses, NOAA Natl.
- 442 Hurricane Cent., Miami, Fla.
- 443
- 444 Jones, P.D., T. Jónsson, and D. Wheeler (1997), Extension to the North Atlantic
- 445 Oscillation using early instrumental pressure observations from Gibraltar and South-West
- 446 Iceland. Int. J. Climatol. 17, 1433-1450.
- 447
- 448 Kaplan, A., M.A. Cane, Y. Kushnir, A.C. Clement, M.B. Blumenthal, and B.
- 449 Rajagopalan (1998), Analyses of Global Sea Surface Temperatures 1856-1991." J. Geo.
- 450 *Res.* 103(C9) 18,567-18,589.
- 451
- 452 Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann (2005), A
- 453 signature of persistent natural thermohaline circulation cycles in observed climate,
- 454 Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.
- 455
- 456 Landsea, C.W., R. A. Pielke Jr., A. M. Maestas-Nunez, and J. A. Knaff (1999), Atlantic
- 457 basin hurricanes, *Clim. Change*, 42, 89-129.
- 458
- 459 Landsea, C.W. (2005), Hurricanes and Global Warming, *Nature*, 438, E11-E13.
- 460
- 461 Mann, M.E., Emanuel, K.A. (2006), Atlantic Hurricane Trends linked to Climate Change,
- 462 *Eos*, 87, 24, p. 233, 238, 241.

464	
465	Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell,
466	E. C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice,
467	and night marine air temperature since the late nineteenth century, J. Geophys. Res.,
468	108(D14), 4407, doi:10.1029/2002JD002670.
469	
470	Solow, A. R., and L. Moore (2000), Testing for a trend in a partially incomplete
471	hurricane record, J. Climate, 13, 3696-3699.
472	
473	Sriver, R. and M. Huber (2006), Low frequency variability in globally integrated tropical
474	cyclone power dissipation. Geophys. Res. Lett. 33, doi: 10.1029/2006GL026167.
475	
476	Trenberth, K. E. (1997), The Definition of El Niño, Bull Am. Met. Soc., 78, 2771-2777.
477	
478	Trenberth, K.E., and D.J. Shea (2006), Atlantic hurricanes and natural variability in 2005,
479	Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.
480	
481	Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang (2005), Changes in tropical
482	cyclone number, duration, and intensity, in warming environment, Science, 309, 1844-
483	1846.

- 484
- 485 Wilks, D.S. (2005), Statistical Methods in the Atmospheric Sciences: An Introduction,
- 486 2nd Edition, Academic Press, 520pp.

- 487 TABLE CAPTIONS
- 488 489

490 **Table 1.** Results of reduced χ^2 tests described in text. Indicated are reduced χ^2 value 491 (χ^2/ν) , degrees of freedom ν and the *p* value for rejection of the null hypothesis of a 492 Poisson distribution.

493

494 **Table 2.** Estimates of occurrence rate μ for the various TC data sub-groupings discussed 495 in text. Provided are the sample sizes *N* and, where appropriate, the effective sample size 496 ϕ accounting for temporal autocorrelation in state variables.

497

Table 3. Results of *t* tests for differences of occurrence rates μ among the different subgroupings discussed in text. Indicated are the effective degrees of freedom in the *t* statistic $\Phi = \min(\varphi_1, \varphi_2)$ -1, and the one-tailed *p* value for rejection of the null hypothesis of equal means.

502

503**Table 4.** Assessments of predictive skill for competing statistical models considered in504this study. Mean square error (MSE) over the full model development period (1870-5052004) is indicated for each case. The MSE for simple (i) climatological mean and (ii)506persistence predictions is provided for comparison. In the case of Poisson regression507models, the coefficient of determination (R^2) is also provided. Validation MSE and R^2 508scores are based on the split calibration/validation procedures described in the text.509

- 510 **Table 5.** Climate state variable values and associated annual TC count predictions *m* and
- 511 associated one standard error uncertainties $\pm \sqrt{m}$ for 2005-2007. 2007 climate variables
- 512 are forecast based on the procedure described in the text.

- **FIGURE CAPTIONS** 514

516	Figure 1. Time Series (1870-2004) of (a) annual Atlantic TC counts, (b) MDR ASO SST
517	time series, (c) Niño3.4 DJF SST index, and (d) NAO DJFM SLP index. Red (blue)
518	indicates positive (negative) anomalies in TC counts and Hurricane-favorable
519	(unfavorable) conditions in the three indices (MDR SST, Niño3.4 and NAO). Note that
520	year convention applies to the 'D' in DJF and DJFM for both 'c' and 'd'.
521	
522	Figure 2. Histograms of TC counts n vs. bin centers (blue) with associated one standard
523	deviation uncertainties ($\pm \sqrt{n}$, yellow shading) and best-fit Poisson distributions (red).
524	Results are shown for unconditional case (all data—panel <i>a</i>) and the 'favorable, 'neutral',
525	and 'unfavorable' sub-groupings discussed in the text (panels b - d). Bin bandwidths were
526	determined as discussed in text.
527	
528	Figure 3. Poisson regression models of annual Atlantic TC counts using the MDR ASO
529	SST, Niño3.4, and NAO series as predictors. Shown are (a) the statistical model fits over
530	1870-2004 based on the two univariate, bivariate and three-variable Poisson regressions
531	(colored curves) along with the observed TC counts for 1870-2004 (black curve),
532	observed TC counts for 2005 and 2006 (filled black circles), predicted TC counts for
533	2005 and 2006 (unfilled colored symbols) and 2007 (filled colored symbols). (b) Poisson
534	regression residuals as defined in text (colored curves) along with the observed TC
535	counts for 1870-2004 (black curve).
536	

540 Table 1

Scenario (1870-2004)	χ^2/v	v	р
All Years	2.09	9	0.027
+MDR SST	0.59	8	0.79
-MDR SST	1.32	3	0.25
+Nino3.4	1.02	8	0.42
-Nino3.4	2.29	7	0.025
+MDR/-Nino ('Favorable')	1.27	6	0.27
-MDR/+Nino ('Unfavorable')	0.28	9	0.98
+MDR/+Nino or -MDR/-Nino ('Neutral')	0.49	7	0.85

542 543 Table 2

Scenario (1870-2004)	μ	N	ø
All Years	8.85	135	
+MDR SST	10.33	64	28
-MDR SST	7.52	71	31
+Nino3.4	7.78	58	
-Nino3.4	9.66	77	
+Nino/+MDR ('Favorable')	10.94	35	20
-MDR/+Nino ('Unfavorable')	5.97	29	20
+MDR/+Nino or -MDR/-Nino ('Neutral')	9	71	33

546 Table 3

Scenario (1870-2004)	t	Φ	р
+MDR SST vsMDR SST	3.59	27	0.0006
+Nino3.4 vsNino3.4	3.70	57	0.0002
Favorable vs. Unfavorable	5.41	19	< 0.0001
Favorable vs. Neutral	2.15	19	0.02
Neutral vs. Unfavorable	4.02	19	0.0004

549 Table 4

Model/Predictors	R ² full	MSE full	R ² valid.	MSE valid	p resid.
Climatology	0.00	13.75			
Persistence	0.07	19.89			
Binary Cond: MDR,Nino		10.80		11.79	
Poisson Reg: MDR	0.24	10.81	0.16	10.47	0.83
Poisson Reg: Nino	0.10	12.51	0.12	12.31	0.08
Poisson Reg: MDR, Nino	0.33	9.37	0.26	9.95	0.35
Poisson Reg: MDR, Nino, NAO	0.38	8.70	0.32	9.02	0.00

551 552

554 Table 5

year	model	MDR	Nino3.4	NAO	predicted (n)	observed (m)
2005	Binary Conditioning	+	-	X	11±3	28
	Poisson Regression	X	-0.65	X	10±3	
		28.87C	X	X	15±4	
		28.87C	-0.65	X	16±4	
		28.87C	-0.65	-0.82	18±4	
2006	Binary Conditioning	+	+	X	9±3	10
	Poisson Regression	X	0.72	X	8±3	
		28.35C	X	x	10±3	
		28.35C	0.72	X	9±3	
		28.35C	0.72	2.43	8±3	
2007	Binary Conditioning	+	-	X	11±3	To be determined
	Poisson Regression	X	-0.2*	X	10±3	
		27.9C*	X	X	15±4	
		27.9C*	-0.2*	X	15±4	
		27.9C*	-0.2*	0.47*	15±4	

556 *predicted value

FIGURE 1

