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1. Introduction

1.1 Motivation and Overview

In order to properly assess the potential impact of forcings external to the climate

system (e.g., possible anthropogenic enhanced greenhouse forcing), it is essential

that we understand the background of natural climate variability on which external

inuences may be superimposed. Atmosphere-ocean-cryosphere interactions include

many feedbacks that have time scales of years and longer. These feedbacks can, in

principle, leaded to irregular, but roughly cyclic, low-frequency climate variations

(perhaps the most well-known example of which is the El Nino/Southern Oscillation

or "ENSO"). If we can separate, in historical and proxy climate data, large-scale

oscillatory, interannual and longer-period climate \signals" from the \background"

climate variability, (1) it becomes easier to distinguish natural climate uctuations

from presumed anthropogenic or other external (e.g., solar) e�ects, (2) dynamical

mechanisms potentially inferred from these signals provide a means of validating

1



numerical climate models; and (3) these signals can themselves potentially be used

for long-range climatic forecasting.

The complex behavior of the climate system challenges any single exploratory

data analysis method. Nonlinear dynamical mechanisms, for example, could con-

nect variations on widely di�ering time scales. Some truly episodic phenomena,

such as climatic responses to large volcanic eruptions, seem best suited for study in

the time domain. Others, such as the periodic changes associated with the seasonal

temperature in surface temperatures, are better suited for study in the frequency

domain. For certain phenomena it is not clear whether an oscillatory or episodic

picture is most appropriate. For example, both the statistical model of a step-wise

discontinuity in the climate during the latter 1970s [e.g. Trenberth, 1980] and that

of oscillatory behavior with a particularly abrupt variation in climate regimes oc-

curing at about that time [Latif and Barnett, 1994; Mann and Park, 1994;1996] but

with similar analogues at other times (e.g., 1900, 1915, 1940, 1955{see Mann and

Park, 1994;1996] have been used to describe large interdecadal uctuations in the

North Paci�c and northern hemisphere climate in recent decades. Depending on

the null hypothesis and statistical criterion employed, both statistical models can

be argued for at reasonably high levels of con�dence. Still other phenomena, such

as ENSO, exhibit a mix of time-domain, or \event", characteristics and frequency-

domain, or \oscillatory", characteristics. Later in this introduction, we present a

skeletal overview of the potential dynamical mechanisms behind low-frequency cli-

mate variability. In later sections, we present attempts to isolate and reconstruct

\quasi-oscillatory" components of the climate system, with characteristic interan-

nual to century timescales, using a powerful multivariate statistical technique called

MTM-SVD. This technique combines the multiple-taper spectrum estimation meth-

ods (MTM), developed by Thomson [1982], with a principal-components analysis

using the singular-value decomposition (SVD). Section 2 presents more traditional

methods for oscillatory climate signal detection.

MTM-SVD detects an oscillatory signal in a spatiallydistributed data set (e.g.,

gridded historical climate �elds) by identifying an unusual concentration of nar-

rowband data variance in a particular large-scale pattern, relative to the random

uctuations of the background climate variability. Although formulated and applied

as a signal detector in the frequency domain, MTM-SVD can be used to reconstruct

the time history of any potential oscillatory climate signal, as well as its spatial
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pattern. Secular trends in the data can also be detected and reconstructed in the

MTM-SVD approach through a treatment of the near-zero frequency data variance.

The evolution of an oscillatory signal over time, either in amplitude, frequency, or

spatial pattern, can also suggest secular changes in the climate system, caused either

by long-term natural variability or possible external forcings.

A proper estimate of the statistical signi�cance of putative oscillatory signals

is crucial in the application of MTM-SVD. As with most multivariate techniques,

statistical inference is most straightforward if the null hypothesis for background

variability is simply speci�able (e.g. spatially-uncorrelated white noise). Climate

data falls far short of this ideal, as its random uctuations exhibit signi�cant corre-

lations in both space and time. Much of Section 3 describes numerical experiments

that demonstrate how to adjust the con�dence levels for signal detection in MTM-

SVD to account for such correlations. Section 3 describes the MTM-SVD method

both formally, building upon the conceptual framework of other time series methods,

and by demonstration on a variety of synthetic data sets.

The MTM-SVD methodology has been used for signal detection and reconstruc-

tion in global temperature data over the past century [Mann and Park, 1994], joint

�elds of surface temperature and sea level pressure in the Northern Hemisphere

[Mann and Park, 1996b] and their relationship to continental hydroclimatic varia-

tions in North America [Mann et al, 1995a], low-frequency signals in the Atlantic

and Paci�c oceans [Tourre et al, 1997] signal detection in global [Mann et al, 1995b]

and regional [Bradley et al, 1994; Rajagopalan et al, 1996] long-term climate proxy

networks, the analysis of radionuclide tracers of the atmospheric general circulation

[Koch and Mann, 1996], long-range climatic forecasting [Rajagopalan et al, 1997],

and model vs. observational \�ngerprint detection" of anthropogenic forcing [Mann

and Park, 1996a]. We demonstrate in section 4 how MTM-SVD can be applied to

some of these issues.

1.2 Signal and Noise in Climate Data: Dynamical Mecha-

nisms

In a crude approximation, background climate variability can be described by a

simple \red noise" model, in which the thermal inertia of the slow-response com-

ponents of the climate system (e.g., the oceans as well as the cryosphere) tends

to integrate the approximately white noise forcing provided by weather systems.
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This process leads to enhanced noiselike variations at progressively longer periods

[Hasselmann, 1976]. More detailed noise models have been developed which take

into account the additional e�ects of convective and di�usive exchanges between the

mixed layer and deeper ocean [Wigley and Raper, 1990]. More generally, climatic

noise can be characterized as exhibiting a \coloured noise" spectrum, associated

with some underlying spatial correlation structure. Such \noise" however is insuf-

�cient in describing the natural variability of the climate that arises from internal

oscillatory modes of the climate system which are either self-sustained through non-

linear dynamics or stochastically excited by the noise itself. These low-frequency

modes or \signals" may further compound the detection of anthropogenic climate

forcing [see e.g., IPCC, 1996; Barnett et al, 1996]. The identi�cation of such signals

may have a profound importance in its own right, providing the possibility of skillful

climate forecasting at decadal and longer lead times [see Latif and Barnett, 1994;

Gri�es and Bryan, 1997, Rajagopalan et al, 1997]. For both reasons, the detection

and description of low-frequency oscillatory climatic signals represents a problem of

paramount importance both scienti�cally and societally.

Besides the seasonal and diurnal cycles, there is scant evidence for truly periodic

climate signals [see Burroughs, 1992]. Many climatic processes nonetheless appear to

exhibit some oscillatory character, describing spatially-coherent climatic variations

which tend to oscillate between di�erent states owing to a variety of possible linear or

non-linear feedback mechanisms. Such \quasi-oscillatory" signals, as we term them,

are marked by a dominant timescale of variation, and often by �nite, somewhat

episodic, spells of large-amplitude oscillation. Perhaps the best-known example is

the El Nino/Southern oscillation which exhibits oscillatory variability within a 3-7

year timescale range, apparently further organized into distinct low-frequency (4-6

year) and high-frequency (2-3 year) narrow frequency bands [e.g., Barnett, 1991;

Keppenne and Ghil, 1992; Dickey et al., 1992; Ropelewski et al., 1992; Mann and

Park, 1994;1996b]. Such behavior can be associated with underlying coupled ocean-

atmosphere dynamics which are presently understood at a reasonably fundamental

level [Cane et al, 1986; Philander, 1990]. There is mounting evidence both from

observational analyses and a variety of theoretical climate model investigations that

similar types of oscillatory signals may exist in the climate on decadal-to-century

timescales. Several workers have isolated decadal-to-interdecadal [e.g., Folland et al.,

1984; Ghil and Vautard, 1991; Allen et al., 1992; Mann and Park, 1993; 1994; Royer,
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1993; Mann et al, 1995a;1995b; Dettinger et al, 1995; Mann and Park, 1996] and

more speculative century-scale [Schlesinger and Ramankutty, 1994; Mann and Park,

1994; Mann and Park, 1996] oscillatory behavior in instrumental climate records

spanning a little more than the last century. The investigation of longer-term proxy

data supports the existence of interdecadal [Plaut et al, 1995; Mann et al, 1995b]

and century-scale [Stocker et al, 1992; Mann et al, 1995b] climate signals prior to

the 20th century.

While many studies have attributed observed decadal-to-century scale variability

to external forcing due to the 18.6-year soli-lunar tide [e.g., Mitra et al, 1991; Currie

and O'Brien, 1992; Royer, 1993], the �11-year solar cycle [e.g., Labitzke and van

Loon, 1988; Tinsley, 1988; Mitra et al., 1991; Currie and O'Brien, 1992] and its 22-

year subharmonic or \Hale" cycle [Vines, 1986], and low-frequency changes in solar

irradiance forcing [e.g., Friis-Christensen and Lassen, 1991, Lean et al, 1995], the

most plausible oscillatory mechanisms { both in terms of physical mechanisms and

their similarity in character to observed patterns of variability { involve natural os-

cillatory processes of the ocean or coupled ocean-atmosphere system. A convenient

categorization of possible mechanisms is provided by Stocker [1996], including (a)

the interaction between the meridional overturning \thermohaline" circulation and

the wind-driven circulation [Weaver and Sarachik 1991; Weaver et al, 1991; Huang,

1993; Cai and Godfrey, 1995] (b) the interaction of thermally-generated baroclinic

gyre anomalies and the thermohaline circulation [Delworth et al, 1993; Greatbatch

and Zhang, 1995], and (c) the basin-scale advection of surface salinity [Maier-Reimer

and Mikolajewicz, 1989; Mysak et al, 1993; Gri�es and Tziperman, 1995; Schmidt

and Mysak, 1996] or temperature [Saravanan and McWilliams, 1995] anomalies in-

uencing deep water production and meridional overturning. A fourth category not

highlighted by Stocker [1996] but which has nonetheless gained recent prominence in-

volves the gyre-scale advection of thermal anomalies in the Paci�c basin, associated

changes in the thermal structure of the upper ocean, and its feedback on the atmo-

spheric windstress pro�le [Latif and Barnett, 1994; Von Storch, 1994]. In addition,

other studies have suggested that the interaction between high-latitude brine release

and ocean circulation [Yang and Neelin, 1993], sub-harmonic generation arising from

the nonlinear interaction of sea ice and high-latitude heat/freshwater uxes [Yang

and Huang, 1996] see also Saltzman and Moritz, 1980; Saltzman, 1982 for a more

general discussion of the underlying non-linear dynamics] when driven by an annual
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cycle, and the interaction between of ice-cover and thermal insolation [Zhang et al,

1995], coupled arctic sea-ice/atmospheric circulation processes [Mysak and Power

1992; Darby and Mysak, 1993] may lead to organized variability on decadal-to-

century timescales. A �nal possibility is that such variability is simply the product

of the fundamentally chaotic interaction of the atmosphere and ocean-atmosphere

system at decadal and longer timescales [see Lorenz, 1990; Roebber, 1995; Liu and

Opsteegh, 1995; Kurgansky et al, 1996].

It is useful to further distinguish the possible climatic mechanisms discussed

above in terms of the fundamental nature of the underlying dynamics. This is not

always a straightforward task, as the distinction between self-sustained unstable os-

cillations and stochastically forced stable oscillations based on classical diagnostics

may not be obvious [Saltzman et al, 1981]. Self-sustained non-linear oscillations re-

sult from a phase-space bifurcation of the system's dynamics [e.g., Hopf bifurcation

{ see Quon and Ghil, 1995; Chen and Ghil, 1995;1996]. Furthermore, such self-

sustained non-linear oscillatory behavior may exhibit a dependence on the external

control parameters of the non-linear system, and frequency-modulation is also pos-

sible [e.g., Tziperman et al, 1994; Jin et al, 1994] if the phase-space character of the

system undergoes lower frequency changes. Such oscillatory behavior tends to ex-

hibit chaotic intermittent oscillations [see Lorenz, 1990] and furthermore, is assumed

to be obscured by the noise present in the climate system. In contrast, stochastically

excited, damped stable oscillations can arise in both linear and non-linear systems.

Such oscillations arise from the excitation of the natural eigenmodes of a stable sys-

tem by stochastic coloured noise forcing [e.g., Hasselmann, 1988; Mysak et al, 1993;

Weaver and Sarachik, 1991; Schmidt and Mysak, 1996; Delworth et al, 1993; Latif

and Barnett, 1994]. Any means of exploratory signal detection in climate studies

should be su�ciently general to identify, though perhaps not distinguish, stochas-

tically excited or self-sustained oscillatory behavior, since neither can a priori be

eliminated based on theoretical or dynamical considerations.

2. Traditional Methods of Oscillatory Climate Sig-

nal Detection

A variety of techniques have been applied to the problem of signal detection in obser-

vational and dynamical model-generated climate data. Such techniques have typi-
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cally employed univariate methods for isolating narrowband peaks in the power spec-

trum of climate time series based on spectral estimation methods such as Blackman-

Tukey or Maximum Entropy Spectrum Analysis [e.g., Brillinger,1981;Marple, 1987].

Traditional attempts to exploit the mutual information available in spatially dis-

tributed climate records have involved Principal Component Analysis (PCA) or re-

lated orthogonal multivariate spatiotemporal decompositions [Preisendorfer, 1988;

Bretherton et al, 1992] followed by spectral analysis of the time series of the resultant

spatial modes [e.g., Trenberth and Shin, 1984; Deser and Blackmon, 1993; Tanimoto

et al, 1993]. Only recently have methods been developed [e.g., Principal Oscillation

Patterns (\POPs") { Hasselmann, 1988, Multichannel Singular Spectrum analysis

(\M-SSA") { Keppenne and Ghil, 1993, and Multitaper frequency-domain Singular

Value decomposition (\MTM-SVD") { Mann and Park, 1994] which simultane-

ously exploit both the coherent spatial structure and narrowband frequency-domain

structure of climatic signals for more e�cient spatiotemporal signal detection. Fur-

thermore, the properties of climatic noise and proper null hypothesis testing in the

context of multivariate signal detection approaches have only recently begun to

receive proper attention [e.g., Mann and Park, 1996b; Allen and Robertson, 1996].

In this section, we motivate a particular model { that of spatiotemporal coloured

noise { as the null hypothesis for climate variability. A spatiotemporal model is in-

voked because of the intrinsic large-scale spatial structure of climatic variations.

A "coloured noise" model is invoked because the complicated dynamics of the cli-

mate system lead to stochastic variations with a frequency-domain structure more

complicated than simple (e.g., Gaussian white noise) models. This model must be

su�ciently well rejected if we are to infer the existence of (ie "detect") a signal in

a climatic data �eld. We argue that such climate signals should be associated with

patterns that exhibit wider spatial coherence than the underlying noise, with nar-

rowband frequency-domain signatures. Under such assumptions for climatic data,

we show how traditional methods for signal detection su�er from a number of weak-

nesses. We motivate instead the MTM-SVD methodology which overcomes many

such weaknesses, and provides certain optimal features in multivariate signal de-

tection and reconstruction. We demonstrate that the MTM-SVD method produces

correct inferences when applied to known (i.e., speci�ed synthetic) spatiotemporal

coloured noise processes, focusing on spatially-correlated \red" noise (including that

which is considerably \redder" than estimates for actual climate data). When ap-
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plied to synthetic data examples, MTM-SVD provides excellent �delity in signal

detection and reconstruction. Finally, we demonstrate that the approach does not

su�er signi�cantly when substantial temporal and spatial inhomogeneities, typical

in real climate data, are introduced into the synthetic example.

2.1 Signal and Noise Assumptions: A Synthetic Dataset

We introduce here a synthetic example with the basic signal and noise attributes

inferred for observed climate data. The synthetic data are constructed on a grid

resembling a cartesian projection of the spherical globe such as is typically used for

gridding actual spatial climate data (Figure 1). The gridded network has uniform

monthly sampling and a duration N = 1200 months (100 years).

The dataset is constructed so as to contain two irregular oscillatory signals and

a trend, each widely correlated over the synthetic global domain, linearly added to

noise which exhibits near-neighbor spatial correlation and an underlying red noise

temporal autocorrelation structure. Thus constructed, the noise, while spatially-

correlated, does not exhibit the large-scale coherent structure associated with the

low-frequency climate \signals." This latter distinction, motivated for both theoret-

ical observational-based considerations described below, underlies the reason that

multivariate analysis can greatly enhance the e�ective signal-to-noise ratio and e�-

ciency of signal detection and reconstruction.

Noise component

We adopt a model of spatially correlated coloured noise that is motivated by the-

oretical models for stochastic climate variability. In the absence of any complex

dynamics, the inertia of the ocean and other slow-response components of the cli-

mate system alone tend to integrate any high-frequency (often approximated as

\white") noise forcing provided synoptic-scale \weather" forcing [see Hasselmann,

1976], altering the temporal characteristics of the noise, but preserving the limited,

near-term spatial correlation structure of the noise.

The simplest mathematical description of such an integrating noise process in

the context of discretely measured variables such as monthly mean climate data, is

the �rst-order autoregressive (\AR(1)") red noise process [see Gilman et al.,, 1963],
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Figure 1: Global Cartesian grid showing spatial sampling of synthetic data network.

Sampling of 25 gridpoints is equally distributed in both longitude (72o separation

between gridpoints) and latitude (36o separation between gridpoints), with data

centered at the \equator" and in \subtropical" and \subpolar" zonal bands in the

two \hemispheres" of the synthetic domain. [From Mann (1998).]
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speci�ed by the statistical model,

yt = �yt�1 + wt (1)

(where wt is a white noise \innovation" sequence, with variance �2) and character-

ized by the power spectrum,

S(f) = S0
1� �2

1� 2� cos (f=fN) + �2
(2)

where the average power S0 is related to the white-noise variance,

S0 = �2=
�
1� �2

�
(3)

Figure 2 shows the power spectrum for ideal monthly sampled AR(1) red noise

processes of increasing levels of autocorrelation. In the AR(1) red noise model,

autocorrelation decays exponentially so that the decorrelation timescale of the noise

� is related to the lag-one autocorrelation coe�cient � by � = ��t= log � where �t is

the temporal sampling interval. � (and less directly �) is a parameter that measures

the relative \smoothness" of the noise spectrum { i.e., how rapidly the amplitude

of the noise spectrum varies with frequency. This smoothness can be quanti�ed in

terms of the relative gain over the bandwidth of the spectrum estimator, which we

will de�ne by the factor,

F (f) = �f
BW

d logS(f)

df
(4)

where a spectrum bandwidth �f
BW

� 0:04 cycle/year is typically applicable in

studies of multidecadal-to-centuries duration climate datasets (see section 2.1). Thus

de�ned, F measures the relative \inverse" of smoothness. A smoothly-varying noise

spectrum can be characterized by the local or global (in the frequency domain)

ful�llment of the condition that F be small compared to unity (i.e., 1=F large). For

F>
�
1 we might expect the \smoothness" assumption to begin to break down, and

for F >> 1 we certainly do.

Given the typical bandwidth indicated above, we can consider the estimated

smoothness for the di�erent cases described in Figure 2. For � = 0 we observe

a uniform \perfect" inverse smoothness factor F = 0 for all frequencies. For the

\moderate" case � = 0:9, we have a maximum value of the parameter FMAX � 0:11

near f = 0:2 cycle/year, and an average value over the interannual frequency range

of interest f < 0:5 cycle/year, of FAV E � 0:09. For the more strongly red case

10



� = 0:99 the corresponding values are FMAX = 0:8 (near f = 0:02 cycle/year)

and FAV E = 0:2. Finally, for the nearly singular case we have FMAX = 8 (near

f = 0) and FAV E = 0:6. Roughly speaking, then, we might consider the noise

spectrum as smoothly varying throughout the interannual frequency range for the

case � < 0:9. For the case 0:9<
�
� < 0:99 we can consider the noise spectrum as

varying smoothly over most of the interannual frequency interval, though perhaps

less so near zero frequency. As � ! 1, the AR(1) red noise process approaches

a pure random walk yt = yt�1 + wt , characterized by �rst-order non-stationarity,

an in�nite decorrelation timescale � and a spectrum that is singular at f = 0.

As the random-walk condition is approached, the noise spectrum may violate our

smoothness assumption. As shown in section 2.1, the best-�t red noise spectrum for

instrumental climate data fall in the white (� = 0) to moderately red (� = 0:9 for

monthly data { i.e., � � 0:8 years) range, and should satisfy the requirements of a

smoothly varying noise background.

AR(1) red noise accurately describes the physical model of natural variability for

a simple stochastically-forced energy balance of the climate which contains a mixed-

layer ocean. It can also be shown to be the limiting case of more complex stochastic

models of climate which allow for exchange of heat with the deep ocean [Wigley

and Raper, 1990]. The latter noise model in general requires the speci�cation of a

number of poorly constrained physical parameters, and is statistically described by

higher order AR models. A combination of dynamical considerations and parsimony

thus might tend to favor the AR(1) red noise model. Indeed, empirical studies of a

wide variety of proxy and instrumental climate data [Gilman et al, 1963; Kutzbach

and Bryson, 1974; Allen and Smith, 1994; Mann and Lees, 1996] suggest that the

AR(1) red noise model provides an excellent description of the background climate

noise spectrum. Nonetheless, the ideal null hypothesis accommodates both simple

AR(1) red noise and more general coloured noise processes. In section 3.3 we intro-

duce a means for employing such a more general coloured noise null hypothesis in

signal detection. Nonetheless, for demonstrative purposes, we here consider the null

hypothesis of climatic noise modeled as having the temporal correlation structure de-

scribed by the AR(1) red noise model, and short-range spatial correlation structure.

Typical estimates of the temporal decorrelation timescales for monthly gridded sur-

face temperature data, for example, are �<
�
1 year [Allen and Smith 1994; Mann and

Lees, 1996]. Estimates of temporal decorrelation scales in actual observational data
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Figure 2: Power spectra of ideal monthly sampled AR(1) red noise processes with

varying levels of month-to-month autocorrelation �. The vertical line separates o�

the \interannual" (f < 0:5cycle/year; periods greater than T = 2 year) regime of

the spectrum. [From Mann (1998).]
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are discussed in more detail in section 2.1. While the spatial decorrelation length

scale d tends to vary somewhat with season [Livezey and Chen, 1983; Bri�a and

Jones, 1992], estimates from both model-based [Madden et al., 1993] and observa-

tional [Kim and North, 1991; Mann and Park, 1993] data indicate an approximate

value of d = 1500 � 2000 km for monthly surface temperature data. In keeping

with the above qualitative description of climatic noise, we prescribe a spatiotem-

poral AR(1) red noise background with a roughly d = 1:5grid spacing decorrelation

length scale, and a temporal decorrelation timescale of � � 0:9 year (� = 0:9) in the

synthetic monthly dataset.

Signal Component

Typical climate signals (e.g., the El Nino/Southern Oscillation or \ENSO") tend

to be associated with large-scale (i.e., global or hemispheric-wide) perturbations

of the coupled ocean-atmosphere system. Such signals are detectable not only in

climatic measurements in the regions where the intrinsic climate dynamics are im-

portant [e.g., the tropical Paci�c in the case of ENSO { see Cane et al, 1986], but

through their altering e�ect on planetary wave propagation, and global atmospheric

circulation patterns, lead to substantial perturbations in remote regions [e.g., Horel

and Wallace, 1981]. Such signals are thus detectable in part because of their hemi-

spheric or global-scale spatial organization. The patterns of expression of ENSO in

surface temperature [Ropelewski and Halpert, 1987] and precipitation [Halpert and

Ropelewski, 1992] are clearly global in extent, and have been theoretically shown to

be consistent with the inuence of tropical heating anomalies on the planetary wave

structure of the extratropical atmosphere [see e.g. Horel and Wallace, 1991] There

is recent evidence both in observational studies [e.g., Dettinger et al, 1995; Ghil

and Vautard, 1991; Mann and Park, 1993;1994;1996b; Schlesinger and Ramankutty,

1994; Mann et al, 1995b] and coupled ocean-atmosphere model simulation studies

[e.g., Latif and Barnett, 1994; Delworth et al, 1993] for oscillatory climate mecha-

nisms with similar global-scale inuence at decadal and longer timescales.

Most theoretical models describe such signals as having a quasi-oscillatory char-

acter. Positive and negative feedbacks, and delayed oscillator coupled mechanisms

can allow for oscillatory behavior in either a linear or non-linear dynamical context.

Either intrinsic non-linearities or stochastic forcing can modulate both amplitude

and phase, leading to �nite spells, or episodes, of coherent oscillatory behavior.
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Figure 3: Temporal (left) and Spatial (right) patterns of synthetic signals showing

(a) secular mode, (b) interdecadal mode and (c) interannual mode. Conventions are

described in the text. [From Mann (1998).]
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SIGNAL SPATIAL CHAR TEMPORAL CHAR T (years) f (cyc/yr) MAX AMP.

TREND Variable amp/sign half-cosine trend 200 0.005 1.0

INTERDEC. OSCIL Variable amp/phase amp mod 15 0.065 1.0

INTERANN. OSCIL Uniform amp/variable phase amp/freq mod 3-5 0.33-0.2 1.0

RED NOISE near-neighbor spat. correlation AR(1) red noise 1.0

Table 1: Description of the 3 synthetic examples and noise in the synthetic example,

Indicating the Spatial and Temporal characteristics of Each Signal (Spatial Phase

and Amplitude Pattern, and Pattern of Temporal Modulation), Signal Period (or

Period Range) in Years, Frequency (or Frequency Range) in Cycles/Year), and

Maximum Regional Peak Amplitude. [From Mann (1998).]

Furthermore, frequency modulation [e.g., in the case of ENSO-see Tziperman et al,

1994; Jin et al, 1994] can result from changes in external governing parameters. A

proper statistical model for oscillatory climate signals must thus describe a narrow-

band but not strictly periodic mode of variability with spatial scale structure that

is coherent (though perhaps quite variable in sign or phase) at large spatial scales.

Climatic trends that are inconsistent with the noise null hypothesis can be treated as

oscillatory signals with zero frequency (i.e., in�nite period). Other types of climate

signals (e.g., volcanic climate perturbations) may have truly event-like character

that is best described by alternative statistical models. [e.g., wavelet based gener-

alizations of the frequency domain methods discussed below { see Lilly and Park,

1995; Park and Mann, 1997].

The synthetic dataset exhibits the key features of our conceptual model of the

climate system. Slowly modulated quasi-oscillatory low-frequency components and

a secular trend are superposed on a spatially and temporally autocorrelated noise

component, with the relative importance of each varying by location. We construct

three synthetic signals that exhibit the kinds of complexity (e.g., amplitude, phase,

and frequency modulation) that we might expect to encounter in true climate sig-

nals. The �rst signal is a secular trend with a half-period cosine shape describing

a variable amplitude \warming" trend in most locations. Some locations exhibit

the opposite sign or a vanishing amplitude. This signal represents an analog for

a spatially-variable global warming signal. The second signal represents an inter-

decadal oscillation with phase/amplitude modulation that vanishes in a global av-

erage due to phase cancellation over the domain. The third signal exhibits the most

complex characteristics, with uniform amplitude, but partial phase cancellation, an

amplitude trend with periodic modulation and linear ramp, and frequency modula-

tion with a rapid transition between 3 and 5 year periodicity during the middle 40
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years. This signal exhibits a poleward propagating phase pattern.

The amplitudes of the signals are prescribed so that the total signal variance is

equal to the total noise variance (i.e., the aggregate signal-to-noise variance ratio is

unity). The secular trend describes 56% of the raw data variance, the interdecadal

signal 25%, and the interannual signal 8%. The residual 43% variance is explained

by the spatially-correlated red noise. Note the similarity between this imposed

breakdown of variance, and the empirical signal/noise decompositions of Mann and

Park [1994;1996b], recounted in Section 4.1 and 4.2. In these data sets the identi�ed

signals consume a somewhat smaller proportion of the data variance, roughly 40%.

The residual 60% variance was attributed to the coloured noise background. The

characteristics of the signals and noise are summarized in Table 1. In Figure 3 we

show the spatial and temporal patterns of the three signals described above, while in

Figure 4 we show the time reconstruction for a reference site (center gridpoint). The

relative spatial pattern is depicted by a vector map in which the angle represents

the relative phase and the length indicates the relative amplitude of the signal at

each gridpoint.

Comparison with Actual Climate Data

In this section, we estimate the signal and noise properties of actual instrumental

climate data to help motivate our assumptions regarding signal and noise in the

preceding sections. We make use of the historical gridded temperature data used

by Mann and Park [1994] in their multivariate analysis of global temperature vari-

ations. In Figure 5, we show the spectra (as estimated by the multitaper method

{ see section 2.2) along with the best-�t red noise background for a few instrumen-

tal gridpoint temperature series in the subset of 449 nearly continuous 100 year

gridpoint temperature records over the globe (see Figure 16).

In almost every of the 449 gridpoint series, the null hypothesis of white noise

(i.e., AR(1) noise with � = 0) is rejected at a very high level of likelihood, with

the best �t values of � ranging from 0.09 to 0.80 and averaging � � 0:35. The

null hypothesis of red noise is only weakly rejected, however. For example, due to

chance coincidence alone, we would expect 30 peaks to randomly exceed the 90%

con�dence level over the positive Nyquist interval (f = 0 to f = 6:0 cycle/year) for a

realization of a true AR(1) red noise process with the bandwidth NW = 2 employed

in the spectrum estimation (see section 2.2). In contrast, the typical temperature
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Figure 5: Multitaper spectra of 3 di�erent 100 year long monthly land air and

sea surface temperature gridpoint records over the globe based on time-frequency

bandwidth factor NW = 2 and K = 3 tapers, along with robustly estimated median

red noise level and 90,95,and 99% con�dence limits for signi�cance relative to red

noise { see section 2.2. [From Mann (1998).]
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gridpoint yields 35-45 peaks that exceed that level. This small discrepancy between

expected rates of false detection, and observed rates of signal detection implies the

existence of additional structure in the climate spectrum which is not consistent

with red noise. We hypothesize that such additional structure implies the existence

of a small number of distinct band- limited processes superposed on a stochastic red-

noise background. We thus argue that (a) moderate (� < 0:9) red noise provides

an excellent null hypothesis for the noise background and (b) there is evidence for a

small number of signals in addition to the noise background. The forgoing analysis

cannot establish whether the latter \signals" do indeed represent spatiotemporally

consistent signals in the multivariate data, and is limited by its assumptions of a

strict AR(1) noise model. We introduce in section 3.1 a methodology for signal

detection that does not su�er either of these limitations. First, however, we review

the traditional approaches to oscillatory climate signal detection.

2.2 Conventional Approaches to Signal Detection

Univariate Signal Detection

While a variety of traditional spectral analysis methods (e.g., Blackman-Tukey)

have been widely employed in the analysis of geophysical processes [see e.g. the

review by Brillinger, 1981 and references therein], specialized methods have more

recently been developed that are more faithful in their underlying assumptions to

the irregular oscillatory behavior expected of climatic signals. Among such methods

are multitaper spectral analysis [Thomson, 1982; Park et al, 1987; Percival and

Walden, 1993] which employs multiple orthogonal data tapers to describe phase and

amplitude modulated structures, and Singular Spectrum Analysis [Vautard and Ghil,

1989; Ghil and Vautard, 1991; Ghil and Yiou, 1996] which makes use of anharmonic

basis functions derived from the lagged covariances of the data series.

These univariate spectral analysis approaches have been used to detect and re-

construct the complicated signals present in climate data [MTM { see Thomson,

1990; Kuo et al, 1990; Park and Maasch, 1993; Mann and Park, 1993; Thomson,

1995, SSA { see Ghil and Vautard, 1991; Yiou et al, 1991, 1993; Allen and Smith,

1994; Schlesinger and Ramankutty, 1994; Lall and Mann, 1995]. Furthermore, con-

siderable attention has been paid to assure proper null hypothesis testing in climate

studies for both SSA [e.g., Allen and Smith, 1994] and MTM [Mann and Lees, 1996].
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Figure 6: (a) The �rst three orthogonal Slepian data tapers for the case K = 3,

NW = 2 and (b) the components of a �xed amplitude phase-coherent sinusoidal

oscillation described by the modulating envelope associated with each of the K = 3

data tapers. [From Mann (1998)].
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robustly estimated median red noise level and 90,95,and 99% con�dence limits for

signi�cance relative to red noise. [From Mann (1998).]
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Rather than focusing on a comparison of these methods [see e.g., Thomson 1982;

Ghil and Yiou, 1996], we here focus on the application of the MTM method to

univariate signal detection alone, postponing any inter-method comparison to the

discussion of multivariate signal detection techniques and the multivariate general-

ization of MTM described in section 3.

In the multitaper method, one determines for a given time series fxgN
n=1, a

set of K orthogonal data tapers and K associated tapered Fourier transforms or

\eigenspectra"

Yk(f) =
NX
n=1

w(k)
n
xne

i2�fn�t (5)

where �t = 1 month is the sampling interval and fw(k)
n
g
N

n=1 is the kth member in an

orthogonal sequence of Slepian tapers, k = 1; : : :K. The \time-frequency bandwidth

parameter" de�ned by NW = p de�nes a particular family of eigentapers. Only the

�rst K = 2p�1 tapers are usefully resistant to spectral leakage, so that the choice of

K and p represent a tradeo� between spectral resolution and the degrees of freedom

(which can be used to constrain the variance of the spectral estimators). In the

context of climate studies of roughly century duration, NW � p = 2 and K = 3

provide a good compromise [Mann and Park, 1994; Mann and Lees, 1996] between

the resolution appropriate to resolve the natural bandwidths of climatic signals, and

the stability of spectral estimates. The set of K tapered eigenspectra have energy

concentrated within a bandwidth of �pfR centered on a given frequency f where

fR = (N�t)
�1

is the Rayleigh frequency. Thus, the choice p = 2 provide a full-

bandwidth of spectral estimation �f
BW

= 2pfR � 0:04 cycle/year for a 100-year

data series. Each of the K eigenspectra represent statistically independent local

averages of the spectral information near f , under the assumption of a smoothly

varying coloured (\locally white") spectral backgrounds. As explained in section 2.1,

this assumption holds up very well for actual climate data which exhibit a weak-to-

moderate red noise background. Figure 6 shows the three orthogonal data tapers for

the case K = 3, along with a sinusoid modulated by each of theK eigentapers. From

the latter plot, it is evident that the multitaper analysis can provide a description

of an irregular narrowband oscillatory signal centered at a particular frequency f

through the variety of amplitude and phase modulations that can be described by a

suitable linear combinations ofK independently tapered carrier oscillations. Each of

theK spectral degrees of freedom available for each time series at a given frequency f

22



will provide statistical information in the multivariate extension described in section

3. In univariate applications these independent estimates are combined through a

weighted average of the eigenspectral estimates to provide a spectral estimate with

optimal spectral resolution/variance tradeo� properties [Thomson, 1982],

s(f) =

P
K

k=1 �kjYk(f)j
2

P
K

k=1 �k
(6)

An \adaptively weighted" estimate of the spectrum can be calculated as

s(f) =

P
K

k=1 b
2
k
(f)�kjYk(f)j

2

P
K

k=1 b
2
k
(f)�k

(7)

where bk is a data-adaptively determined weighting function of the eigenspectra that

seeks to minimize broad-band leakage in the spectrum [Thomson, 1982].

We here show the results of univariate MTM spectral analysis applied to the

problem of detecting signals in the synthetic data set (Figure 7). We use the pro-

cedure of Mann and Lees [1996] to provide robust estimates of the estimated red

noise background and signi�cances of narrowband peaks. Since the phase of each

oscillation varies over the spatial grid, there is some cancellation of the oscillatory

components in the average across series. Note that the MTM spectra of the \global

average" does not detect the interdecadal signal, constructed to vanish in a global

average, as signi�cant. Partial phase-cancellation of other signals also diminishes

the usefulness of large-scale spatial averaging. Although interdecadal and interan-

nual peaks are detected for the \reference" gridpoint, the secular trend, small at

that gridpoint, is not recognized as signi�cant at the 95% level. The secular trend

and interdecadal peak are clearly detected in the spectrum for the \northwest" grid

point, but it is di�cult to identify any consistent interannual peaks in this spectrum

or that of the \reference" gridpoint, and there are several spurious peaks (sampling

uctuations from the noise background) that rival the true signals in their promi-

nence. Thus, on one hand, large-scale spatial averaging is often an ine�ective means

of signal/noise ratio enhancement. On the other hand, signal-to-noise ratios in the

univariate \regional" signal detection approach are too low for consistent detection

of large-scale signals. It is thus clear that the mutual information available in the

spatially distributed data must be used in a more sophisticated way for e�ective

spatiotemporal signal detection. This is particularly true in exploratory analysis

where the spatial structures at di�erent frequencies are not known a priori.
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PCA+Spectral Analysis

A common approach to spatiotemporal signal detection in geophysical applications

is based on some variant of Principal component analysis (PCA), in which a Singular

Value Decomposition (SVD) is performed on the data matrix followed by spectral

analysis \PCA+SA") of the time series of the independent spatial modes [Trenberth

and Shin, 1984; Deser and Blackmon, 1993; Tanimoto et al, 1993; Venegas et al,

1996].

Consider a set of individual data series x(m) (m = 1; 2; : : :M) of length N time

units (e.g., months or years) centered to represent departures from the respective

long-term means. Typically, each series is normalized by its standard deviation.

The resulting demeaned and normalized series are termed \standardized" series.

The standardized spatiotemporal data can then be written as a data matrix

X =

2
666664

w1x
(1)
t1

w2x
(2)
t1

: : : wMx
(M)
t1

w1x
(1)
t2

w2x
(2)
t2

: : : wMx
(M)
t2

...

w1x
(1)
tN

w2x
(2)
tN

: : : wMx
(M)
tN

3
777775

(8)

where t1; t2; : : : ; tN spans over the N time samples, and m = 1; 2; : : : ;M spans

the M (e.g., individual gridpoint) di�erent series. wm might, for example, indicate

weightings by gridpoint area.

The data matrix is decomposed by Singular Value Decomposition,

X =
MX
k=1

�mum
yv
m

(9)

into its dominant spatiotemporal eigenvectors, where the M -vector or empirical

orthogonal function (EOF) vm describes the relative spatial pattern of the mth

eigenvector, the N -vector um or principal component (PC) describes its variation

over time, and the eigenvalue (the square of the singular value) �m is the associated

fraction of described data variance. The dagger on the vector u
m

indicates the

conjugate transpose.

We demonstrate the application of PCA to the synthetic dataset described in

section 2.1. Four eigenvalues (each indicating the fractional data variance explained

by an associated empirical eigenvector which describes the temporal variation of a

particular �xed anomaly pattern) are established as signi�cant relative to spatially-

correlated noise in the multivariate dataset (Figure 8). The signi�cance criterion is
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Figure 8: Eigenvalue spectrum of the PCA decomposition of the synthetic dataset.
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spatial autocorrelation of the gridpoint data. Thresholds for signi�cance are shown

based on the two di�erent calculations described in the text. [From Mann (1998)].
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based on the PCA selection \rule N", modi�ed to take into account the reduction in

spatial degrees of freedom owing to spatial autocorrelation [Preisendorfer, 1989]. Es-

timating a spatial decorrelation scale of d = 1:5 gridpoints, leads toN 0
� N=d = 11:7

so that only eigenvectors with � > 1=N 0 = 0:085 are to be retained. Furthermore,

there is a clear break in the eigenvalue spectrum from its red noise oor between

eigenvalues 4 and 5, so the selection of 4 eigenvectors seems quite natural in this

case.

The decomposition provided by PCA exhibits several clear shortcomings. An

immediate problem is that the PCA procedure detects 4 signi�cant statistically

independent modes of variation in the data when we know a priori that only 3

modes of variation are distinct from the red noise background.

Furthermore, the power spectra of the statistically signi�cant PCs (Figure 9)

present a muddled picture of signal and noise in the dataset. PC #1 describes a

pattern of variability which exhibits dual dominant timescales including a signi�cant

trend and signi�cant narrowband variance in the 3-5 year interannual range. The

reader will note a striking similarity to the spectrum of the globally-averaged data

shown earlier in Figure 7 (top). The PC #1, to a very good degree of approximation,

describes the globally in-phase mode of variation in the dataset. This component is

slightly di�erent from the global mean because variations that are 180 degrees out

of phase project oppositely onto the global mean. Thus, the principal mode of the

PCA has no simple \physical" interpretation, representing a combination of incom-

plete projections of two of the signals { secular trend and interannual signal { which

project onto the global mean. PCs #2,3, and 4 describe various combinations of

the residual, spatially-heterogeneous component of the multivariate data. The mod-

ulated interdecadal oscillation appears as a peak of varying prominence in each of

these 3 PCs. The interannual signal is scattered in varying degree among each of

the PCs. The noise background, furthermore, is not consistently decomposed among

the 4 PCs, with PC #3 exhibiting a considerably whiter noise background than the

others. The mis-identi�cation of signal and noise arises here results from fundamen-

tal weaknesses in the PCA+SA signal-detection approach. The primary weakness

results from the performance of two consecutive statistical operations which have

conicting optimality properties. PCA performs a time-optimal variance decom-

position through a Karhunen-Loeve expansion of the dataset in the time domain,

appropriate for a random or broadband multivariate process. However, as discussed
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Figure 9: Multitaper spectra of the signi�cant principal components (1-4) along

with signi�cance levels relative to red noise. [From Mann (1998).]
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earlier, there is considerable evidence for narrowband processes in observed climate

data with characteristics similar to those we have imposed in our synthetic exam-

ple. When such narrowband frequency-domain structure is present, the thoroughly

unoptimal frequency-domain properties of the time-domain decomposition become

apparent [see the discussion by Brillinger, chapter 9, 1981]. In contrast, a frequency-

domain Karhunen-Loeve expansion provides an optimal decomposition of the data

variance for this latter case [Thomson, 1982]. The combination of a red noise back-

ground and narrowband multivariate processes in the synthetic dataset thus cannot

be e�ciently separated in the PCA+SA approach. Furthermore, because there is

no phase information (see however, the \complex" PCA method described below)

in the PCA decomposition, the propagating phase structure in the signals cannot

be correctly described by the empirical eigenvectors. Rather, the eigendecomposi-

tion must arti�cially describe such phase information in terms of multiple standing

waves.

Nonetheless, a variety of generalizations of PCA have been developed which

attempt to ameliorate several of the problems noted above, through various modi-

�cations or alternative spatiotemporal variance decompositions. Below we discuss

such methods, pointing out the relative strengths and weaknesses of each approach,

and emphasizing those particular weaknesses or limitations which are overcome by

the MTM-SVD approach described in section 3.

Multivariate AR

While typically applied to the problem of spatiotemporal interpolation of data �elds

in climate studies [e.g., Wikle and Cressie, 1996; Kaplan et al, 1997], Markovian

(ie, AR(1) or higher order AR) spatiotemporal models do Also provide a means

of multivariate spectrum estimation and signal detection [see Marple, 1987]. Such

multivariate AR methods of spectral analysis o�er the drawback however that (a)

they assume strict stationarity of the data and (b) provide less than optimal reso-

lution/variance tradeo� properties in spectral estimation.

Principal Oscillation Patterns

Principal Oscillation Patterns or \POP"s [Hasselmann, 1988; Penland, 1989; Xu,

1993; Von Storch et al, 1995] exploit Markovian structure in the data in a dy-

namical context distinct from that of the conventional multivariate AR approach.
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\POPs" o�er a philosophical appeal under certain assumptions for the governing

dynamics; they invoke a speci�c dynamical model { stochastically forced damped

linear oscillatory behavior { in multivariate spectral estimation. Furthermore, POPs

are readily generalized to incorporate spatially-variable phase information (complex

POPs or \CPOP"s-see Bursor [1993]). As long as the underlying model of stable

linear dynamics is appropriate, and the climatic data series to be analyzed are long,

POPS or CPOPs provide a useful means of signal detection. On the other hand,

the speci�city of the subsumed inverse model limits the usefulness of POPS as an

exploratory data analysis tool, when the correct dynamical model describing signals

cannot be speci�ed a priori or when the exact underlying noise spectrum is not

known. The POP approach, furthermore, is not optimized to guard against the bi-

ases (i.e., spectral leakage) known to exist in the spectrum estimation of �nite time

series [Thomson, 1982], and will provide unoptimal signal vs. noise decompositions

for relatively short and noisy time series.

Extended EOFS

Extended EOFs [Weare and Nasstrom, 1982; Graham et al, 1987; Preisendorfer,

1988] identify the dominant spatiotemporal structure of lagged sequences of covari-

ance estimates. Such a decomposition can thus capture time-evolving patterns in

the data, since phase information is retained in the decomposition. The approach is

useful to recover oscillatory patterns that are known to exist in the data, but cannot

be used to detect spatiotemporal signals themselves without further generalization

(see \Multichannel SSA" below).

Rotated EOFs + Spectral Analysis

Through selecting alternative rotated combinations of the eigenvectors obtained

through PCA (e.g., \varimax rotation" [e.g., Richman, 1986; Houghton and Tourre,

1992] one can often obtain spatial patterns which may bear a closer relationship

to particular, physically-based modes of variability (e.g, the dynamical pattern of

ENSO). To the extent that such rotation may allow for a more natural separation of

the data into physically meaningful patterns, the PCA+SA procedure used above

can be combined with a rotation procedure to provide a more faithful separation of

the true signals in the data, and a more faithful signal detection procedure. Such

a rotation is however subjective, requiring some a priori assumptions regarding the
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spatial patterns that are of physical signi�cance (e.g., in the case of varimax rotation,

that spatial structures of signals should be regionally localized). Objective selection

rules for signi�cance in PCA are also lost upon rotation. In some sense, rotation of

EOFs prior to spectral analysis is an imperfect solution to the more fundamental

problem that PCA provides only a time-domain optimal decomposition of the data

variance, unable to appropriately recognize frequency-domain organization.

Complex Harmonic PCA

A complex generalization of PCA known as \complex harmonic PCA" or \CH-

PCA" [see e.g., Wallace and Dickinson, 1972; Barnett 1983; Trenberth and Shin

1984; Barnett 1991, Preisendorfer, 1988 { see also \principal components in the

frequency domain" (chapter 9) in Brillinger, 1981] provides a better description of

oscillatory features in a multivariate dataset than does conventional PCA. The CH-

PCA procedure makes use of PCA on a matrix analogous to that de�ned by (2.7)

but containing instead appropriately estimated complex spectral estimates y(m) of

the data series x(m) at all resolvable frequencies,

Y =

2
666664

y
(1)
f0

y
(2)
f0

: : : y
(M)
f0

y
(1)
f1

y
(2)
f1

: : : y
(M)
f1

...

y
(1)
fN�1

y
(2)
fN�1

: : : y
(M)
fN�1

3
777775

(10)

A PCA is then performed in the transformed, frequency domain,

Y =
NX
n=1

�nun
yvn (11)

where n in this context runs over the N distinct frequencies of the Discrete Fourier

Transform of a dataset of length N samples. The empirical orthogonal function

(EOF) vm describes the complex spatial pattern in amplitude and phase of the

nth eigenvector, and the N -vector um now describes the combinations of pure har-

monic components of variability that describe the relatively smooth time-evolution

of the nth eigenvector. The eigenvalue (the square of the singular value) �m as

before describes the associated fraction of data variance. Because phase informa-

tion is maintained in this procedure, standing and traveling oscillatory signals in

the dataset are described more faithfully [see Preisendorfer, 1988, chapter 12]. The
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primary limitation of \CH-PCA" is that spectral estimates for the neighboring fre-

quency estimates treated as independent random variables are in fact correlated,

introducing a statistical dependence that is di�cult to assess in interpreting the

results of the eigendecomposition. Furthermore, modulated or irregular oscillations

are not appropriately modeled.

Bandpass-�ltered PCA

In what can be viewed as an alternative to CH-PCA, a technique for identifying

narrowband but anharmonic oscillatory features in the data is to pre-�lter with a

bandpass over the frequency interval of interest [e.g., Trenberth and Shin, 1984],

seeking to determine if there is a single dominant mode of variability within that

restricted frequency band. While this approach does allow the detection of irregular

narrowband oscillations, some of the more fundamental problems noted earlier for

PCA+SA are not circumvented. In particular, because phase information is lost in

the PCA, only standing oscillations can be described by any particular eigenmode.

Furthermore, though bandpassing alleviates the most serious problems in PCA of

successive operations of frequency domain-optimized �ltering (bandpassing) followed

by time-optimal �ltering (time-domain PCA of the data), the conventional �ltering

procedures invoked [e.g., the Hilbert Transform { see Preisendorfer, 1988] provide

less than optimal spectral resolution/variance tradeo� properties [e.g., Thomson,

1982].

Multichannel SSA

The approach of Multichannel SSA or \M-SSA" [Keppenne and Ghil, 1993; Allen

and Robertson, 1996; Moron et al, 1997], as in the method of extended EOFs de-

scribed earlier, employs a multivariate correlation-space eigenvector decomposition

to describe evolving spatially-correlated structures in a multivariate dataset. In-

deed, the terminology of \extended EOFs" and \M-SSA" is sometimes used inter-

changeably [Allen and Robertson, 1996] We will draw a distinction, however, using

\M-SSA" to describe the more general procedure of estimating the statistical sig-

ni�cance (relative to a speci�ed noise null hypothesis) of spatiotemporal oscillations

detected in the lagged estimates of the data covariance matrix. Beyond detecting

signi�cant irregular spatiotemporal oscillations in a multivariate dataset, M-SSA

provides a direct link to the theoretical framework of non-linear dynamical systems
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[see Vautard and Ghil, 1989; Ghil and Yiou, 1996]. The approach provides an opti-

mal decomposition in the correlation domain, and not in the frequency domain [note

the explicit comparisons of Thomson, 1982, of correlation-domain and frequency-

domain estimators]. SSA (and its multivariate counterpart \M-SSA") can usefully

analyze only those quasi-oscillatory structures with periods in the range [L=5; L]

where L = N=3. [see Vautard et al, 1992] where L is the embedding dimension

for the lagged-covariance estimation (equivalently, the width, in time units, of an

equivalent moving window through the time series). Consequently, there are rather

severe restrictions on the range of frequency bands over which temporal structure

can be reconstructed simultaneously. For instance, to recover interdecadal patterns

(approximate period 20 years), one may want to choose L = 30 years with a 100 year

record. This window width will not allow the reliable decomposition of oscillatory

signals (e.g., ENSO) with dominant timescales less than 6 years in this case. More

importantly, in the multivariate context, M-SSA approach runs up against severe

dimensional limitations for large datasets. The introduction of multiple channels in

the covariance estimation requires the statistical decomposition of a matrix in the

time, spatial index, and lag domains. For a �xed duration data series of length N

and M channels (e.g., gridpoints), this requires the SVD of an N 
ML matrix,

which quickly becomes ill-posed (i.e., a unique eigendecomposition of the variance is

not possible) as the number of spatial channelsM becomes large. To avoid this prob-

lem, the spatial dataset must �rst be further decomposed into a lower-dimensional

representation (e.g., by conventional PCA) before the M-SSA algorithm is applied

[Vautard et al, 1992; Moron et al, 1997]. This latter step then tends to reintroduce

some of the limitations of classical PCA noted above which we seek to avoid. In this

sense, the usefulness of M-SSA becomes limited for spatially-extensive datasets.

3. MTM-SVDMultivariate Frequency-Domain Cli-

mate Signal Detection and Reconstruction

The multitaper frequency-domain singular value decomposition or \MTM-SVD"

approach [Mann and Park, 1994; Mann et al, 1995ab; Mann and Park, 1996ab]

exploits the optimality of multitaper spectral analysis for analyzing narrow band

signals superposed on a smoothly-varying spectral noise background [see section

2.1]. The MTM-SVD approach seeks to isolate statistically signi�cant narrowband

32



oscillations (which may be modulated or \irregular" in nature) that are correlated

among a su�ciently large number of normalized independent series or \channels"

(e.g., multiple gridpoints) as to comprise a signi�cant fraction of the total data vari-

ance. The approach invokes a null hypothesis of a smoothly-varying coloured noise

background, rejecting the null hypothesis when a large share of the multivariate data

variance within a speci�ed narrow frequency band can be attributed to a particular

mode (i.e., modulated spatiotemporal oscillation) of variability. The approach can

be appropriately modi�ed with an \evolutive" generalization to describe broader-

band and frequency-modulated processes [see Mann et al, 1995b; Mann and Park,

1996b]. Wavelet-based generalizations of the procedure more appropriate for the

description of episodic variability have also been developed [Lilly and Park, 1995;

Park and Mann, 1997].

As the MTM-SVD approach is complex-valued in nature, it naturally describes

spatially-correlated oscillatory signals with arbitrary spatial relationships in both

amplitude and phase. In this manner, the approach can distinguish standing and

traveling oscillatory patterns in a spatiotemporal dataset. The multitaper decom-

position also allows for a relaxation of the typically strict stationarity assumptions

invoked in most spatiotemporal decompositions. The optimal frequency-domain

properties of multitaper spectral analysis enables the procedure to provide superior

signal detection and signal/noise separation under the assumption of narrowband

signals and the null hypothesis of a spatially correlated coloured noise background

with a smoothly varying spectrum. Moreover, because the methodology allows for

the detection of either periodic or aperiodic irregular oscillatory patterns, it does

not invoke restrictive assumptions regarding the governing dynamics. The charac-

teristics of amplitude-, phase- and frequency-modulated spatiotemporal oscillations

assumed in the associated statistical model of \`signal", for example, accommodates

the description of stochastically excited linear climate oscillations and self-sustained

non-linear oscillations equally well. Thus, the MTM-SVD technique provides a

philosophical appeal over conventional multivariate techniques in an exploratory

data analysis setting.

In this section, we describe details of MTM-SVD method, including the tech-

niques for signal detection, signal reconstruction, and con�dence level and signi�-

cance estimation. We demonstrate that the method provides the correct null infer-

ences when applied to a class of spatially-correlated coloured (red) noise processes.
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Finally, we demonstrate highly successful spatiotemporal signal detection and re-

construction when the method is applied to the synthetic signal+noise example

described in section 2.1.

3.1 Signal Detection

The MTM-SVD signal detection method makes use of the mutual information avail-

able from each of the K spectral estimates available at each frequency f in a mul-

tivariate dataset of \spatial dimension" M . Rather than averaging the estimates of

the distinct K eigentapers as in equations (2.5) and (2.6), the MTM-SVD approach

retains the independent statistical information provided by each of the K eigenspec-

tra, and seeks to �nd the optimal linear combinations of eigentapers that maximize

the multivariate variance explained by a particular amplitude/phase modulation

of a given carrier frequency component. The availability of multiple independent

spectral estimates for each time series at a given frequency f is the fundamental re-

quirement for the orthogonal decomposition employed in the MTM-SVD approach,

and in almost all cases, the minimum value of the time-frequency bandwidth pa-

rameter NW = 2 is used which admits (K = 3) such multiple degrees of freedom.

This choice insures minimal loss of frequency resolution. The reader is referred back

to the discussion of section 2.2 and Figure 6. The decomposition describes a carrier

oscillation modulated by a complex envelope function with K degrees of freedom,

allowing for the description of modulated, irregular oscillations while providing the

optimal spectral resolution/variance tradeo� of multitaper spectral analysis.

We "standardize" each of the series to be analyzed by removing the mean over

the N samples to yield an \anomaly" series fx0
n
g
(m) and normalize the resulting

series by its standard deviation �(m), where n = 1; : : : ; N and N is number of

samples (e.g., N = 1200 for 100 years of monthly data). This normalization favors

the detection of spatially-coherent processes. To represent the data in the frequency

domain, we calculate the multitapered Fourier transforms for each normalized time

series xn
(m) = x0

n

(m)=�(m)

Yl
(m)(f) =

NX
n=1

w(l)
n
xn

(m)ei2�fn�t (12)

for a given choice of K and the time-frequency bandwidth product NW = p, as in

the univariate multitaper procedure (see equation 2.4). Because secular variations
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are separated from higher-frequency variability with minimum spectral leakage, non-

stationarity of the �rst order (e.g., a linear trend in the data) can be described with

little bias on the rest of the spectrum, without any detrending or \pre-whitening" of

the data series. Thus, the decomposition avoids the strict stationarity requirements

of most statistical time series decompositions.

The M �K matrix,

A(f) =

2
666664

w1Y1
(1) w1Y2

(1) : : : w1YK
(1)

w2Y1
(2) w2Y2

(2) : : : w2YK
(2)

...

wMY1
(M) wMY2

(M) : : : wMYK
(M)

3
777775

(13)

is formed with each row calculated from a di�erent grid point time series, and each

column using a di�erent Slepian taper. The wm represent spatially-variable weights

to adjust for relative areas of gridpoints, etc.

To isolate spatially-coherent narrowband processes, a complex singular value

decomposition [e.g., Marple, 1987] is performed of the above matrix,

A(f) =
KX
k=1

�k(f)uk(f)
y

v
k

(14)

into K orthonormal M -vectors uk, representing complex spatial empirical orthogo-

nal functions (\spatial EOFs"), and K orthonormal K-vectors vk [termed \spectral

EOFS" by Mann and Park 1994] which we will term here \principal modulations"

in analogy with \principal components" of a time-domain eigendecomposition. Be-

cause the SVD is a multi-linear decomposition, this approach posits a linear spatial

relationship among all time series (e.g., spatial gridpoints) in any given signal. Any

regional responses which are non-linearly related to the large-scale signal may be

imperfectly described by the estimated signal spatial pattern. The \principal mod-

ulations" describe the linear combination of projections of the K eigentapers which

impose the amplitude and phase modulation of the oscillatory behavior associated

with the kth mode. The key distinction between CH-PCA and MTM-SVD is that

the MTM-SVD technique performs a local frequency-domain decomposition of K

statistically independent spectral estimates as de�ned by equation 13, whereas CH-

PCA performs a global frequency-domain decomposition over all spectral estimates

(compare equation 10). This distinction is the primary reason that the MTM-SVD

technique can be used to isolate irregular oscillations superposed on an arbitrary

smoothly varying coloured noise background.

35



The singular value �k(f) scales the amplitude of the kth mode in this local

eigendecomposition, where the K singular values are ordered �1(f) � �2(f) �

: : : �K(f) � 0. The associated \eigenvalues" are the �k
2(f). The normalized prin-

cipal eigenvalue, �1
2(f)=

P
K

j=2 �j
2(f) provides a signal detection parameter that is

local in the frequency domain. Under the assumption that no more than one sig-

nal is present within the narrow bandwidth of spectral estimation, the normalized

principal eigenvalue should stand out distinctly above what would be expected from

an appropriate noise model. In the relatively unlikely event that there exist two

similarly strong signals within a single bandwidth, the usefulness of this detection

parameter will be diminished. We refer to the normalized principal eigenvalue as

a function of frequency as the \local fractional variance spectrum" or \LFV" spec-

trum. The LFV spectrum varies between 1=K and unity in magnitude, and has a

variable frequency bandwidth �fMTM�SVD between �fR and �pfR, as it can be

no more narrow than the Rayleigh resolution fR and no greater than the band-

width corresponding to a uniform average of the K eigenspectra (i.e., �fBF de�ned

in section 2.1). Correspondingly only variability with period shorter than N�t=p

(e.g., 50 years for 100 years of data and NW = 2) can be con�dently distinguished

from a secular variation. This multivariate spectrum provides a powerful frequency-

domain signal detection parameter, indicating the maximum fraction of narrowband

spatiotemporal variance that can be explained by a particular modulated oscillation

as a function of frequency. Typically, only this principal eigenvalue spectrum is used

as a signal detection parameter. An iterative procedure may be advised if there is

reason to believe that multiple signals may be present in a particular narrow fre-

quency band. For example, Mann and Park [1994;1996b] use this latter procedure

to identify two signi�cant secular variations in instrumental climate data of the

past century (see section 4.1 for more details regarding this iterative procedure).

As discussed below, the frequency-independent nature of the distribution of LFV

for a wide range of coloured noise processes provides for fairly unrestrictive null

hypothesis testing, and the use of powerful non-parametric signi�cance estimation

procedures.

3.2 Signal Reconstruction

The spatial pattern of a signal associated with a signi�cant peak in the LFV spec-

trum at frequency f = f0 is described by the complex-valued M�vector, u1 which
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indicates the relative amplitude and phase of the signal at particular locations (e.g.,

grid points) of the multivariate dataset. Using the envelope estimate ~A1(f0; t) (see

equation 17), the reconstructed spatiotemporal signal ~y is described by,

~x(m)
n

= (f0)<
n
�(m)u

(m)
1

~A1(n�t)e
�i2�f0n�t

o
; (15)

where u
(m)
1 is the mth component of the spatial EOF u1(f0). The factor (f0) = 2

for f0 � pfR, owing to contributions from spectral information near f0 and �f0.

At f0 = 0, (f) = 1. For 0 < f0 � pfR, the value of  is more problematic, as

the sampling widths of the Slepian tapers in the frequency domain for f0 and �f0

overlap partially. In practice, it is simplest to treat such long-period variability as

quasi-secular and use the f0 = 0 passband for its reconstruction.

The canonical spatial pattern of the signal can be represented by the complex

�eld,

x̂(m) = (f0)�
(m)u

(m)
1 Arms(f0) (16)

where the pattern is scaled by the root-mean-square amplitude Arms(f0) of the mod-

ulating envelope ~A1(f0; t) (because of amplitude modulation, the amplitude of the

pattern is variable from cycle to cycle). This reconstructed pattern describes the

evolving spatial pattern over a cycle, and can thus be represented by a complex-

valued pattern [see e.g., Mann and Park, 1994], with the magnitude of the vector

indicating relative amplitude and the angle indicting relative phase (i.e., relative

timing of peak/minimum anomaly at a particular location for a particular vari-

able). This information is often more physically portrayed in terms of a sequence

of real-valued anomaly patterns (positive or negative values of the anomaly �eld)

corresponding to the projection of the complex spatial vector onto various phases

of a cycle [e.g., Mann and Park, 1996b].

The complex-valued K�vector v1 can be inverted to obtain the slowly varying

envelope of the signal, similar to the complex demodulate. Park [1992] and Park

and Maasch [1993] show how the slowly varying envelope A(t) of an oscillatory sig-

nal x(t) = <fA(t)e�i2�f0tg centered at a \carrier" frequency f0 can be estimated

from a set of eigenspectra Yl(f0), l = 1; : : :K. The time domain signal x(t) and

envelope <A(t) are formally identical for modes referenced to f0 = 0, that is, the

secular modes of variability. In the multivariate case, the time-domain signal is

reconstructed from the components of its corresponding spectral EOF v�

1(f0). This
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reconstruction is not unique and requires additional constraints. The simplest re-

construction is an MTM version of the complex demodulate, a linear combination

of the Slepian tapers fw(l)
n
g
N

n=1

~A1(n�t) =
KX
l=1

��1
l
�l(f0)(v

(l)
1 )�w(l)

n
; (17)

where v
(l)
1 is the lth component of the vector v

1
(f0). The �l are the bandwidth reten-

tion factors of the Slepian tapers [see Park and Maasch, 1993]. This reconstruction

tends to minimize the size of the envelope and thus favors ~Ak ! 0 at the ends of

the time series. Such an inverse clearly is not appropriate for signals associated

with nonstationarity in the mean (i.e., a secular trend). A second possible inversion

minimizes the numerical �rst derivative of ~A1(n�t) [Park, 1992], which favors en-

velopes that approach zero slope at the ends of the time series. Such an inversion

does not discriminate against a zero-frequency trend in the data, for example, but

is suited poorly for other describing features which change rapidly near the begin-

ning or end of the data series. A third possible constraint minimizes the roughness

of the envelope using the second derivative of ~A1(n�t), which constrains neither

the mean nor the slope near the ends of the data. Mann and Park [1996] favor a

more general data-adaptive means of time-domain signal reconstruction in which

the mean-square multivariate mis�t with the raw data is minimized over all possible

linear combinations of these 3 constraints. This approach removes the subjective

reliance on some particular a priori boundary condition assumption and has been

shown to provide optimal skill in a forecasting context [Rajagopalan et al, 1997].

For the evolutive procedure, the temporal reconstructions are performed sepa-

rately in a sequence of staggered windows or \moving window" of speci�ed width

through the entire data series. The width of the window is typically chosen so that

it includes multiple periods of the oscillatory signal of interest, but is short enough

to capture the evolution of frequency and amplitude features over the duration of

the record. As an example, to study interannual (say, 3-5 year) oscillatory behavior

associated with ENSO based on roughly century duration records, we typically in-

voke a 40 year window in the evolutive procedure. The temporal reconstruction is

in this case determined by a multivariate projection �ltering [Thomson 1995; Mann

and Park 1996a] using the reconstructions from overlapping intervals of adjacent

windows. The spatial reconstruction for an evolutively determined signal (repre-

senting the \average" relative spatial phase and amplitude pattern of the signal) is
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determined by averaging the spatial patterns over multiple windows from the be-

ginning to end of the full data interval. In this case, the relative spatial patterns (in

both amplitude and phase) vary somewhat over time, consistent with the possible

non-stationarity of certain climate process [see for example, the discussion of secu-

lar changes in the characteristic e�ect of ENSO on precipitation patterns in certain

regions by Ropelewski and Halpert [1987]. For such cases, either the spatial pattern

corresponding to a particular window of time when the signal is strongest, or the

average pattern over all windows, may be of most interest.

3.3 Testing the Null Hypothesis: Signi�cance Estimation

The statistical signi�cance of potential signals in the LFV spectrum requires an

accurate estimate of the expectations from chance coincidence, given an appropriate

null hypothesis. Following the earlier discussion of section 2.1, the least restrictive

null hypothesis that might be adopted is that the observed behavior arises from the

statistical uctuations of a spatiotemporal noise process with an arbitrarily coloured

noise background and a spatial correlation structure estimated empirically from the

data set itself. The signi�cance of putative narrowband signals detected in the

LFV spectrum is estimated by diagnosing the likelihood that a given value of the

LFV would arise from random uctuations of such a process. Spatial correlation in

the climate noise background which is largely local, but, to a lesser extent, at the

larger planetary wave scale also, strongly limits the true number of spatial degrees of

freedom in the sampling of any climatic �eld. If such spatial correlation of the noise

is not properly accounted for, incorrect signi�cance level estimation and spurious

signal detection (ie, peaks in the LFV spectrum) are likely. We guard against

contaminations from long-range spatial correlations in the climate background noise

by a bootstrap resampling of the multivariate data in time. This resampling destroys

temporal, but not spatial, structure in the data set. Thus, MTM-SVD analysis

of many independent time-resamplings of a multivariate data set can be used to

calibrate the LFV con�dence levels.

The LFV spectrum measures, within a narrow frequency band, the amplitude

of the largest spatially-correlated oscillatory \signal" relative to oscillations with

other spatial patterns and temporal modulations. To be used as a signal detec-

tion parameter, the statistical signi�cance of local peaks in the LFV spectrum is

established by estimating the corresponding null distribution of the LFV parameter
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Figure 10: (top) Center gridpoint annual mean reference series for spatiotemporal

noise realization with varying levels of autocorrelation �. (bottom) LFV spectrum

of the MTM-SVD analysis based on multivariate spatiotemporal noise realization

with varying levels of autocorrelation �. [From Mann (1998).]
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for spatially correlated coloured noise in the absence of signal. The fundamental

advantage of the LFV spectrum as a means of signal detection in this regard, is the

universality of its underlying distribution for a very general class of noise processes.

Under the assumption that the noise components of the time series that comprise

the multivariate dataset exhibit a smoothly varying coloured noise spectrum (e.g.,

as de�ned in section 2.1) the null distribution is in fact independent of frequency

and indistinguishable from that of white noise series with the same underlying spa-

tial correlation structure. This frequency-independence of the distribution results

from the fact that the K eigenspectra estimated from a noise process will exhibit

a Gaussian distribution at any frequency f as long as the noise spectrum appears

at over the narrow bandwidth f � pfR within which the eigendecomposition is

actually performed. This local variance decomposition is resistant to inuence from

neighboring frequency bands owing to the spectral leakage resistance properties of

MTM discussed in section 2.2.

We demonstrate this frequency-independence of the null distribution of the LFV

spectrum using the speci�c example of spatially-correlated red noise, showing the

virtual independence of the LFV spectrum of the level of temporal autocorrelation

in the dataset. There is nothing preferential about the AR(1) coloured noise model,

however, and in fact the LFV exhibits a universal null distribution for any smoothly

varying coloured noise process with a given number of spatial degrees of freedom.

These features allow us to invoke a quite weak null hypothesis in signal detection

that accommodates not only spatially-correlated red noise, but in fact a wide class

of spatially-correlated coloured noise processes (e.g., the noise model of Wigley and

Raper [1990] discussed earlier). We exploit the frequency-independence of the null

distribution by making use of a resampling technique for estimating this distribu-

tion and associated con�dence intervals for signi�cance. We employ a bootstrap

method [Efron, 1990] in which the spatially-distributed dataset is resampled in such

a way that the spatial patterns of the actual data are unaltered, but their tempo-

ral sequence is randomly permuted in time. This permutation whitens the dataset,

destroying any temporal structure, but keeping all spatial structure intact so that

the spatial degrees of freedom in the actual (e.g., monthly) data �eld are always

faithfully represented. Because the distribution of the signal detection parameter {

the LFV spectrum { is independent of frequency under the assumptions described

above, the distribution of the white bootstrap resamples is representative of that for
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any frequency. Within one bandwidth of zero frequency (the \secular band") how-

ever, fewer spectral degrees of freedom are available because the Fourier transform

becomes real-valued at f = 0. Within this secular band, the con�dence levels must

be estimated separately.

The null hypothesis described above can also be tested by an alternative \para-

metric" approach. If the number of spatial degrees of freedom M in the noise

background can be reasonably estimated, an alternative parametric procedure for

estimating the null distribution is provided by Monte Carlo simulation with M re-

alizations of a Gaussian distributed process [see Mann and Park, 1994]. Generally,

the non-parametric bootstrap procedure is preferable, avoiding a priori assumptions

of the spatial correlation structure of the noise. The frequency-independence of the

distribution provides improved statistics on the quantile distribution, allowing the

averaging of results over many independent frequencies of the discrete Fourier trans-

form. Typically, 1000 independent bootstrap realizations are performed, providing

good enough statistics for reliable estimation of the 99% threshold for signi�cance.

When dealing with monthly or seasonal data in which there may be seasonal inho-

mogeneity in the variance as well as the mean [for example, di�erent seasons may

have di�erent levels of temporal autocorrelation { see e.g. Bri�a and Jones, 1992],

it is often advisable to perform the bootstrap procedure separately for each month

of the year, averaging the results for all months or the appropriate season analyzed

[see Mann and Park, 1996b].

To test the proper distribution estimation of the bootstrap procedure, we gener-

ated replicates of the synthetic spatiotemporal red noise process described in section

2.1 with varying levels of temporal autocorrelation. The same white noise innova-

tion was used in each case, so that the stochastic element is identical for each case.

The time series for the reference center gridpoint are shown for increasing values of

� (Figure 10, top). The case � = 0 corresponds to a pure white noise sequence. The

lower-frequency variability becomes relatively enhanced as � increases, with the case

� = 0:9999 � 1 nearly a non-stationary random walk (the reader is referred back to

Figure 2).

We applied the MTM-SVD methodology with K = 3 and NW = 2 to estimate

the LFV spectrum for each spatiotemporal noise realization, estimating signi�cance

levels from the bootstrap procedure described above. The estimated null distri-

bution, the reader might note, will be independent of the value of � owing to the
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� 50% 90% 95% 99%

0.0 50% 10% 5% 1%

0.9 50% 10% 5% 1%

0.99 50% 12% 6% 2%

0.9999 50% 15% 10% 5%

Table 2: Rates of Exceedence of a Given Con�dence Level for Signi�cance as a

Function of the Noise Autocorrelation Level �. [From Mann (1998).]

whitening nature of the bootstrap. Of interest, then, is whether this independence

holds up, at least under reasonable degrees of redness, for the observed distributions

of LFV spectra for the red noise processes themselves. The LFV spectra for the dif-

ferent cases are shown in Figure 10, bottom. Since the case � = 0 corresponds to

white noise, the null hypothesis of a smoothly varying \locally white" noise back-

ground should trivially be satis�ed. Indeed, the observed LFV spectrum breaches

the 99% con�dence level at a 0% rate, the 95% level at a 4.1% rate, and the 90%

level at an 11.7% rate. This distribution is consistent with the expected rates of

chance coincidence for rejecting the null hypothesis (1%, 5%, and 10% respectively).

Moreover, the distribution for moderate red noise (i.e., � = 0:9, redder in fact than

observational climate data as discussed in section 2.1) is virtually indistinguishable

on the scale of the plotted LFV spectrum from that of the pure white noise case

(compare cases � = 0 and � = 0:9 in Figure 10). Even for the quite strongly red

case � = 0:99, the observed spectrum is quite close to that for the white noise case.

Only as the red noise spectrum nears singularity (i.e., � = 0:9999 � 1) does the dis-

tribution of the LFV spectrum noticeably depart from that of the pure white noise

case. The most obvious discrepancies are observed at low frequencies where the the

parameter F de�ned in section 2.1 far exceeds unity. A more thorough experiment

employing ensembles of 1000 random trials (Table 2) demonstrates that the cor-

rect rates of chance exceedence of given con�dence levels are indeed obtained for

all but the largest value of �. Thus, the null distribution of the LFV spectrum has

been shown to conform to the pure white-noise distribution under precisely those

conditions for which our a priori de�nition of a smoothly varying coloured noise

spectrum is satis�ed. While we have demonstrated the frequency-independence of

the null distribution for the LFV spectrum and the validity of the signi�cance esti-

mation procedure for the case of a smoothly varying red noise spectrum, we assert

without demonstration that the requirement is much more generally just that of
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smoothly varying coloured noise background, for which the spectrum does not vary

abruptly with frequency (ie, a \locally-white" noise background). This generality of

the null hypothesis invoked in the signal detection procedure is a signi�cant strength

of the MTM-SVD methodology.

3.4 Application to Synthetic Dataset

We now apply the MTM-SVD methodology to the full synthetic (spatiotemporal

signal + noise) dataset described in section 2.1 using K = 3 and NW = 2. Figure

11 (top) shows the LFV spectrum of the full 100 years of synthetic monthly data.

Each of the a priori signals (secular trend corresponding to the zero frequency peak,

interdecadal peak centered near f = 0:065 cycle/yr, and multiple peaks within the

f = 0:5 to f = 0:33 cycle/yr band of the frequency-modulated interannual signal)

are signi�cant well above the 99.5% level. There are no spurious peaks at the 99%

level, consistent with chance expectations. With NW = 2 and N = 1200 months of

data, there are between 25 and 50 independent values of the LFV spectrum within

the range f = 0 to f = 0:5 cycle/yr, so that roughly speaking, no spurious peaks

are expected at the 99% level, and only 1 or 2 at the 95% level.

The multiple, closely spaced set of highly signi�cant peaks in the f=0.2 to f=0.33

cycle/yr (3-5 year period) range that were detected in the LFV spectrum are sug-

gestive of a more broadband signal. Thus, it is useful to use an evolutive version

of the analysis to see if a more parsimonious description of the signal is evident.

Figure 11 (bottom) shows the evolutive LFV spectrum based on a 40 year moving

window. Note that in this case, only oscillatory signals with period shorter than

20 year timescale can be resolved from a secular variation, so that the interdecadal

signal and secular trend appear as a single merged low frequency streak in the evo-

lutive spectrum. In the resolvable interannual band, however, a single dominant

band of signi�cant variance emerges, drifting from a dominant frequency f = 0:35

cycle/year (� 3 year period) early, to f = 0:5 cycle/year (� 2 year period) near the

end of the series. Amplitude modulation is also somewhat evident in the evolutive

LFV spectrum itself, although a reliable estimate of the amplitude modulation is

only possible through signal reconstruction. It is thus clear that the description

of a single frequency-modulated interannual signal provides a more parsimonious

description of the group of peaks in the interannual band found in the spectrum of

the full 100 year series.
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Figure 11: Local fractional variance spectrum of SVD based on (top) full 100 years

of monthly data and (bottom) evolutive analysis with a 40 year moving window.

In the former case, 90%, 95% and 99% con�dence levels are shown with dashed

line. For latter case, the LFV spectrum amplitude is indicated in grayscale, �ltered

at the 90% level for signi�cance. Darker contrast indicates greater amplitude and

signi�cance [From Mann (1998).]
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Figure 12: Temporal (left) and Spatial (right) patterns of reconstructed synthetic

signals showing (a) secular mode, (b) interdecadal mode and (c) interannual mode.

Actual reference time-domain signal as (see Figure 2) is shown by dashed curve for

comparison to reconstructed reference time signal. [From Mann (1998).]
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Each of the 3 signals are independently reconstructed (Figure 12). The secular

and interdecadal oscillatory signals are reconstructed by the standard technique

described in section 3.2, while the interannual signal is reconstructed based on the

evolutive reconstruction method, employing a 40 year moving window. Both the

spatial and temporal reconstructions are faithful to the exact counterparts (Figure

3), resolving much of the the complicated spatial variations in amplitude and phase

of the true signals. Since the signals were immersed in spatially correlated red noise,

some degree of noise contamination is unavoidable, and small spatially-correlated

errors in both amplitude and phase are evident in the reconstructed spatial patterns.

It is worthy of note that the spatial correlation structure of the noise itself can lead to

spurious small-scale coherent departures from the true signal. Nonetheless, the phase

and amplitude errors are modest, and it is clear that reconstructed signal amplitudes

are very small in those regions where no original signal was present (compare e.g.,

the spatial patterns for the true and reconstructed interdecadal and secular signals

at the nodes of the true signals). More simplistic means of signal projection (e.g., the

common bandpassing of a multivariate dataset over a preferred range of frequencies)

will lead to considerable spurious projection of the noise background. Such errors

are largely avoided in the MTM-SVD signal reconstruction procedure, because only

a particular modulated component of the narrowband variance is projected out in

signal reconstruction. Consequently, regional errors in amplitude and phase are

smaller.

These observations underscores a shortcoming of conventional PCA that is over-

come in the MTM-SVD approach. As discussed previously in section 2.2, the spatial

patterns of PCA eigenmodes are often arbitrary, and it is thus di�cult to distin-

guish true global signals from combinations of regional signals arti�cially combined

through the PCA procedure. Procedures such as varimax rotation [Richman, 1986]

may yield more physically sensible patterns, but only under certain restrictive as-

sumptions regarding the spatial structure of signals; in fact the true linear transfor-

mations of the eigenmodes required to yield physically distinct climate signals can-

not a priori be known. In the case of MTM-SVD, a corresponding alternative linear

transformation{the Fourier transform{is in fact speci�able a priori. The MTM-SVD

procedure assumes that a signal has a very speci�c narrowband frequency-domain

structure, and under that assumption assures quite high spatial signal-to-noise ra-

tios in signal reconstruction. While there is considerable power in the synthetic data

47



(signal-plus-noise) at all gridpoints at all frequencies, the regional as well as large-

scale spatial structure of the reconstructed signals were shown above to be quite

faithful to their true counterparts. The ambiguities in distinguishing regional vs.

global spatial structures, inherent in conventional PCA, is thus relatively alleviated

in the MTM-SVD approach. Similarly, as discussed later, some of the de�ciencies

inherent in joint �eld decompositions are avoided when performed in the context

of MTM-SVD. In the event where more than one signal is present within the nar-

row bandwidth of spectral estimation, however, similar problems and ambiguities to

that encountered in traditional PCA can arise. Such an example is presented and

discussed in section 4.1.

3.5 E�ects of Sampling Inhomogeneities

Finally, we test the sensitivity of the MTM-SVD methodology to the sorts of po-

tential sampling problems encountered in actual climate datasets. We examine the

e�ects of temporal gaps in the sampling, as well as the the e�ects of the sparse

spatial subsampling of the global domain. We test the sensitivity to inhomogeneous

time sampling by placing random gaps independently in each of the 25 gridpoints of

the synthetic dataset, introducing a proportion of missing data that varies linearly

from 50% at the beginning of the N=1200 months to 0% at the end. This trend

in missing data simulates the gaps in instrumental climate data which are far more

prevalent early in the instrumental climate record, and virtually absent in the most

recent record. In the true climate record, this trend in sampling is somewhat more

complex [for example, World War II induced a sudden decrease in spatial sampling

of climate observations { see e.g., Bottomley et al, 1990]. The precise dates of the

missing data are not correlated in space, again consistent with the typical missing

data bias found in actual climate data. The gaps introduced as described above are

somewhat more severe than those found in any of the gridded temperature dataset

described earlier, ensuring a conservative test of the impact of missing data in ac-

tual climate records. The MTM-SVD analysis is repeated with this missing data,

�lling gaps with linear interpolation of neighboring values in time for each gridpoint

(Figure 13). The missing data has little discernible e�ect on the analysis, owing

largely to the fact that the serial correlation in time due to both signal and noise

decreases the amount of independent information in any one sample. Given that

the synthetic data has similar temporal correlation structure to the observational
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climate data, we conclude that sizable rates of randomly missing data have little

inuence on the ability to discern signi�cant frequency-domain information in the

multivariate data. The impact of systematic biases in the collection of data, hidden

in the processing stage of gridded monthly data typically used for climate studies,

exhibits a greater potential to decrease the �delity of these records, but considerable

attempts have been made to document and ameliorate the impacts of such biases in

gridded climate data [see the review by Parker et al, 1995]. Jones and Bri�a [1992]

favour the use of sea surface temperature (SST) rather than marine air temperature

(MAT) measures of maritime temperature variations owing to historical changes in

the diurnal timings of sampling in the latter case. SST measurements, on the other

hand, su�ers from systematic biases due to changes in bucket collection methods

that can, if imperfectly, be estimated [Bottomley et al, 1990].

Finally, we examine the bias of inhomogeneities in the spatial sampling of climate

data by employing sparse subsamples of the full spatial domain (see Figure 14) to the

dataset described above. The application of the MTM-SVD methodology to these

sparser spatial networks reveals a surprising insensitivity to the precise sub-sampling

of the spatial domain, though the relative prominence and detectability of signals

depends on whether or not regions where the signal is strongest are included in the

spatial network (Figure 15). The \checkerboard" network grid of (I) containing 13

of the 25 gridpoints exhibits an LFV spectrum which is virtually indistinguishable

from that of the full grid. So too does the more regionally restricted network of 10

gridpoints of (II), with no di�erences in peak detection at the 95% or greater levels of

inference. The sparser regular network of 9 gridpoints of (III) begins to show signal

detection degradation, with the interannual peaks detected at a lesser (95%{99%)

degree of con�dence than in the full dataset and cases I and II. Similar observations

hold for the \northern hemisphere" only sparse network of 8 gridpoints in (IV). In

this case, the sparseness of \tropical" sampling where the interdecadal signal is most

prominent, leads to decreased detectability of the signal { it is just barely isolated

at the 99% level for signi�cance. Only with the very sparse network of 5 gridpoints

(V) does the signal detection procedure su�er markedly. This network, for example,

only samples the grid where the secular trend either vanishes or is relatively weak.

Not surprisingly, the secular peak is not isolated as signi�cant. Furthermore, the

sampling network contains only a small number of spatial samples, and they are

distributed over a small sub-region where the relatively larger coherence scale of the
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signals relative to noise cannot be as readily exploited. Furthermore, with such few

spatial degrees of freedom, the temporal gaps introduced in the individual synthetic

series become more problematic, as there is little mutual information in space to

help guide the spatiotemporal decomposition. In this case, distinctions between

signal and noise at e.g., the 95% con�dence level are less decisive. Notable spurious

peaks (e.g., two between f = 0:4 and f = 0:5 cycles/year) breach the 95% level

of signi�cance. Comparing with LFV spectra of the denser grids (I-IV) allows us

to visualize how increasing degrees of freedom in sampling allow for more clearcut

signal/noise separation, damping out these noise uctuations.

While a precise comparison of the spatial gaps in the synthetic data to those

of the observational data is not possible because the relevant spatial scales and

densities of sampling are not directly comparable, these results suggest that the

samplings available in the instrumental record are probably adequate to analyze

signals representative of global or hemispheric domains. The sparse networks of

long-term proxy climate indicators available for analysis [Mann et al, 1995b] are

more likely to su�er some of the biases evident, for example, in the worst case

scenario (V) discussed above.

4. Applications of MTM-SVD Approach to Obser-

vational and Model Climate Data

The search for oscillatory signals in the climate record exhibits a long and, some-

times checkered, history. Other than certain climate processes such as the 3-7 year

El Nino/Southern oscillation (ENSO) for which the underlying dynamics are now

relatively well understood [see e.g., Cane et al, 1986; Philander, 1990] the detec-

tion of oscillatory signals in the climate record has remained controversial [see e.g.,

the review by Burroughs, 1992]. Increasingly widespread and higher-quality climate

data and the development of more sophisticated statistical analysis techniques has

led to more con�dent exploratory signal detection in climate studies. Several re-

cent studies, for example, have provided evidence for decadal and longer timescale

oscillatory climate signals in greater than century-long records of estimated global

or hemisphere-mean surface temperature [e.g., Folland et al., 1984; Kuo et al, 1990;

Ghil and Vautard, 1991; Allen and Smith, 1992; Mann and Park, 1993; Schlesinger

and Ramankutty, 1994; Mann and Lees, 1996]. Without providing a spatial picture
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of variability however, such studies shed little insight into the possible processes

that may be responsible.

Simultaneous analysis of multiple indices of climatic variability, including ver-

tically resolved oceanographic and atmospheric data [see e.g., Wallace et al, 1992;

Fraedrich et al, 1993; Xu, 1993] have the potential to o�er the most insight into

underlying dynamical processes, but long duration (i.e., century-long) globally-

distributed records are not available. Geopotential height data, for example, are

available for only a few decades. Long records of sea level pressure are available

but are largely con�ned to the northern hemisphere. Widespread records of pre-

cipitation exist, but they represent a more indirect proxy for underlying physical

processes. Global temperature data provide widespread coverage for almost a cen-

tury, and probably provide the greatest potential for the detection of interannual and

decadal-scale spatiotemporal climate signals. Only proxy climate data, however, can

provide a longer-term perspective on multidecadal and century-scale climate vari-

ability. Qualitative studies of longer-term proxy climate data [e.g., Bradley and

Jones, 1993] have been undertaken, but systematic multivariate analyses of these

data are at a preliminary stage [see Bradley et al, 1994; Diaz and Pulwarty, 1994

Mann et al, 1995].

It is thus worthwhile to analyze all of the complementary data available, both in-

strumental and proxy, to isolate persuasive evidence for signals in the climate record.

Few early studies analyzed records of su�cient duration and global extent to charac-

terize modes of climatic variability at decadal and longer timescales. Furthermore,

most applications of conventional spatiotemporal signal detection approaches to cli-

mate data have su�ered the limitations outlined in section 2.2. Seeking to obtain

a clearer picture of possible low-frequency signals in the climate record, we review

in this chapter the application of the MTM-SVD multivariate signal detection ap-

proach described in chapter 3 to various instrumental and proxy climate datasets.

We �rst describe an analysis of globally-distributed monthly land air and sea

surface temperature data available during the past century [see Mann and Park,

1994]. The spatiotemporal nature of the analysis allows us to judge the relative

importance of spatially uniform variations which may be associated with changes in

the global surface heat budget, and more regionally heterogeneous patterns which

may be indicative of the relocation of heat by anomalous patterns of atmospheric

circulation. Aside from identifying well-established quasibiennial and interannual
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ENSO signals in the data, this analysis provides evidence for less well-established

decadal and multidecadal signals. These signals include a 15-18 year timescale

oscillatory pattern exhibiting important tropical and extratropical features, and

a secular \multidecadal" variation associated with a single cycle of warming and

cooling global in extent, but most pronounced in the North Atlantic.

To obtain a more direct picture of the possible dynamical processes governing

such signals, we analyze spatiotemporal variability jointly between surface temper-

ature and sea level pressure (\SLP") records that are available for nearly a century

covering much of the northern hemisphere [see Mann and Park, 1996b]. This analy-

sis yields independent evidence for the signals discussed above, and provides physical

insight into possible underlying dynamical processes. The coupled oscillatory pat-

terns of surface temperature and atmospheric circulation anomalies provide a more

speci�c \�ngerprint" of variability for comparison with signals found in climate

model simulation studies. Seasonal and time-dependent features of the signals are

more closely examined in this analysis. While sacri�cing the global scope of the

temperature-only analysis, the joint �eld analysis provides more dynamical insight,

and nearly complete spatial sampling of the Northern Hemisphere region.

Next, to address the di�culty in isolating multidecadal and longer-term oscil-

lations in the short instrumental record, we analyze a globally-distributed set of

disparate proxy (\multiproxy") temperature records of several centuries duration

[Mann et al, 1995b]. This analysis provides evidence for persistent 15-30 year pe-

riod interdecadal, and 50-100 year century-scale climatic oscillations. While the

widespread sampling available in the instrumental record is not available in the

proxy data sampling, the resolvable features of the spatial patterns appear to be

consistent with their instrumental counterparts. Most importantly, information re-

garding the long-term amplitude and frequency modulation and the persistence of

oscillations over time is available from this analysis.

Finally, we focus the MTM-SVD method on the frequency band centered on

f = 1cyc=yr, i.e., the yearly cycle of temperature, to examine historical shifts in the

timing of the seasonal cycle. To do this, we restore the yearly cycle of temperature at

each gridpoint to the temperature anomaly data set described by Bri�a and Jones

[1992]. We verify that the seasonal shift reported by Thomson [1995] is present

in this data set, and appears strongly concentrated in the continental interiors of

the Northern-Hemisphere continents. We show that the observed spatial pattern of
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seasonal shifts is in conict with predictions of the e�ects of enhanced-greenhouse

conditions in two well-known numerical climate models.

4.1 Global Temperature Data

Global surface temperature records provide a long and widespread sampling dating

back to the 19th century. Such data sample most of the globe, albeit quite sparsely

in certain regions. Mann and Park [1993] demonstrated that interannual and inter-

decadal temperature signals, while widely correlated, exhibit spatial variability that

leads to considerable cancellation in a global average. Thus, analyses of hemisphere

or global-mean surface temperature alone [e.g., Folland et al., 1984; Kuo et al, 1990;

Ghil and Vautard, 1991; Allen and Smith, 1992; Mann and Park, 1993; Schlesinger

and Ramankutty, 1994; Mann and Lees, 1996] can yield at best incomplete informa-

tion regarding low-frequency climate signals. An analysis of the spatial patterns of

signals is essential to capture more fully the complex regional variations in ampli-

tude, sign, or phase of low-frequency global temperature signals. Here we seek to

isolate the full spatiotemporal structure of oscillatory modes of variability in global

temperature, including those whose e�ect is largely to redistribute heat over the

Earth's surface. Such signals would scarcely be evident in large-scale temperature

averages.

The temperature data used in this analysis (Figure 16) consist of land air and

sea surface temperature anomalies distributed on a 5� � 5� global grid [see Jones

and Bri�a, 1992]. To obtain nearly continuous monthly sampling from 1891 to

1990, we use a subset consisting of M = 449 grid points containing only small gaps

(less than 6 months). We interpolated these gaps linearly, yielding time series of

length N = 1200 months (i.e., 100 years). Such interpolation is defensible in light of

the demonstrations regarding temporal inhomogeneity in section 3.5. While notable

spatial gaps are evident over certain regions (e.g., the southern oceans, large portions

of the North Atlantic and Paci�c, Africa), the most seriously unsampled regions {

the high latitudes { represent a small proportion of the global surface area. In light

of the tests of spatial sampling sensitivity described in section 3.5, the available

gridpoint data should be su�cient for establishing global-scale signals. Nonetheless,

as described later, we provide an additional internal consistency check by comparing

results from a relatively homogeneous, sparse spatial subsampling of the data with

those of the full gridpoint dataset set (see also Figure 16).
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An attempt has been made [Jones and Bri�a, 1992] to remove the potential

sources of systematic bias in this dataset arising from urban warming, historical

changes in data collection, and the weighting of data within grid points. To the

extent that some residual biases are inevitable, we refer the reader to discussions

by those who have looked into these issues most carefully [Jones and Bri�a, 1992;

Parker et al, 1994; Bottomley et al, 1992]. Similar applications of the MTM-SVD

methodology to spatially-interpolated instrumental climate datasets of greater than

century duration [e.g., Kaplan et al, 1997] have recently been undertaken [Tourre et

al, 1997].

Here we apply the standard MTM-SVD analysis procedure described in section

3 to the temperature dataset, with the conventional choices K = 3 spectral degrees

of freedom and bandwidth parameter p = 2 that were advocated previously. The

gridpoint anomaly series are standardized (ie, the long-term mean is removed and

the residual is normalized by its standard deviation). The M = 449 gridpoints are

uniformly weighted in the analysis. Temporal signal reconstruction is performed

based on a priori speci�ed boundary constraints of \minimum-slope" for secular

variations and \minimum-norm" for oscillatory signals (see section 3.2). Justi�ca-

tion of these choices is provided by Mann and Park [1994], although more objective

boundary constraints (see section 3.2) are used in the subsequent analysis of joint

SLP and temperature data (section 4.2).

LFV spectra

Figure 17 shows the LFV spectrum resulting from the MTM-SVD analysis of the

100 year dataset over the broad frequency range f = 0 to f = 2:0 cycle/year (i.e.,

periods from secular trend through half-year). Statistical signi�cance levels shown

were taken from the bootstrap resampling estimates of the null distribution. A sep-

arate parametric analysis [Mann and Park, 1994] suggests that this distribution is

equivalent to that of Gaussian (locally) white noise with ~M = 20 spatial degrees of

freedom. The most prominent peaks are the secular (f � 0) peak and those corre-

sponding to the seasonal cycle and its �rst harmonic at f = 1 and f = 2 cycle/year.

The latter peaks are somewhat unexpected in deseasonalized temperature anomaly

data for which the seasonal cycle has nominally been removed [Jones and Bri�a,

1992]. Due to the deseasonalization process, one statistical degree of freedom has

been removed from any variability at the annual cycle or its harmonics. The de-
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creased number of degrees of freedom raises the required levels of signi�cance in the

LFV spectrum from those shown, but does not alter the conclusion that the annual

cycle and its �rst harmonic are signi�cant in the anomaly data. This anomalous

behavior in the annual cycle of global temperature anomaly data was �rst noted by

Kuo et al [1990], and appears to be associated with low-frequency changes in the

timing of the seasons [Thomson, 1995; Mann and Park, 1996a]. Otherwise, the LFV

spectrum exhibits for the most part the frequency-independent spectrum expected

for a coloured noise process (the reader is referred back to the discussion of section

3.3) but with a somewhat greater number of 99%-signi�cant peaks (11 aside from

the 3 discussed above) than would be expected (1-2 following the discussion in sec-

tion 3.3) from chance coincidence alone. Of these, 8 are found in the interannual

(f < 0:5 cycle/year) band, corresponding mostly to frequencies (e.g., the � 2:1

quasibiennial period and the 3-7 year period ENSO band) associated with a priori

established climate signals. Other apparent signals, however, are more disputable.

Note that the background LFV spectrum (e.g., the depth of the noise oor) does not

exhibit a corresponding increase in the interannual frequency range, underscoring

the fact that the distribution of the LFV spectrum is similar at the low frequencies,

as expected, but that there are simply a greater number of excursions at the highest

percentiles. This observation is consistent with the detection of a small number of

narrowband interannual signals superimposed on the noise background. We focus

on these below.

Figure 18 shows the LFV spectrum in the interannual (f > 0:5 cycle/year {

i.e., periods greater than 2 years) range. Results for the full 100 years of monthly

data are shown along with those based on only the �rst and last 90 years of data.

The latter calculations provide a test of the robustness of signals \found" in the

LFV spectrum. Further truncation of the data series would decrease the spectral

resolution of the LFV spectrum to the point where meaningful comparison is not

possible. The irregular nature expected of the signals will lead to variations in the

relative prominence of individual spectral peaks over di�erent time intervals, but

consistency among the three trials allows more con�dent signal detection inferences.

The LFV spectrum indicates peaks centered at 2.2 years, several peaks within the

4-6 year band, a peak centered at 15-18 year period, and a secular peak where the

signi�cance breaches the 99% con�dence level for nonrandomness in each of the

three trials. Other signi�cant peaks are not as robust. The peak near 3 year period
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breaches the 99% con�dence level in one of the three cases, and at least the 90%

level in the other two. Peaks near 3.5 year period, 7-8 year period, and 10-12 year

period pass or nearly reach the 95% con�dence level in two of the three cases, and

at least the 90% con�dence level in the remaining case.

Trend detection can also be accommodated through analysis of the LFV spec-

trum, but some subtlies must be taken into account. As explained in section 3.1,

multiple signals with period longer than N=p (where p = 2 is the bandwidth param-

eter used in all of our studies), corresponding to the secular band f < pfR = 0:02

cycle/year in this study, cannot be distinguished in the LFV spectrum. However,

at least K-1=2 distinct secular variations can still be separately identi�ed by virtue

of their orthogonal spatial patterns and temporal modulations if referenced to the

secular band near f = 0. Both secular trends and ultra-low-frequency oscillatory

signals in this case will be described as having a carrier frequency f = 0 and an

envelope with K�1 = 2 degrees of freedom (there is a loss of one-degree of freedom

at f = 0 due to removal of the mean). The envelope can thus describe limited

oscillatory, though strictly not periodic, behavior. An iterative procedure is used to

identify possible signi�cant secondary secular modes of variation, based on the frac-

tion of residual secular variance explained once the principal mode is accounted for.

This process leads to the detection of two distinct secular timescale signals at the

99% con�dence level in the global temperature dataset. The primary mode accounts

for 77% of the zero-frequency variance (i.e., an LFV of 0.77) while the secondary

mode describes most of the remaining 23% zero-frequency variance. Because the

resolution of the LFV is variable between fR and pfR and K � 1 distinct modes

(i.e., trends or oscillatory variations) are resolvable at each distinct frequency value,

these two modes need not combine to describe all of the variance in the nominal

secular band (f < 0:02 cycle/year). Only for convenience are multiple secular vari-

ations referenced to the same frequency f = 0 for detection and reconstruction. A

residual of secular band variance is left behind once these two secular variations are

taken aside, describing the low-frequency noise background which is not discernible

from coloured noise.

Distinct peaks in the LFV spectrum at 15-to-18 and 11-to-12 year and near

2.2 year period rise abruptly from the noise background, and are thus inferred as

representing distinct \signals" in the data. In contrast, the group of peaks within

the 3-7 year ENSO band are not well separated from the noise background or from
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# f (cycle/yr) � (years) % LFV TMAX TRMS TGLB PGLB
SECULAR TREND 0{0.02 trend 0.77 1.7 0.55 0.51 0.94

MULTIDEC. VARIATION 0{0.02 >50 0.23 1.4 0.29 0.03 0.10

INTERDEC. OSC. 0.055{0.065 15{18 0.60 1.6 0.45 0.18 0.40

QUASIDEC. OSC 0.085{0.09 10{12 0.52 1.7 0.37 0.06 0.17

ENSO BAND 0.13{0.15 6.7{7.7 0.53 1.4 0.39 0.16 0.42

" 0.175{0.195 5.1{5.7 0.62 1.6 0.36 0.09 0.32

" 0.21{0.23 4.3{4.8 0.61 1.6 0.37 0.15 0.41

" 0.295{0.30 3.3{3.4 0.51 1.3 0.36 0.10 0.28

" 0.32{0.35 2.8{3.0 0.53 1.1 0.28 0.11 0.40

QUASIBI OSC 0.43{0.47 �2.2 0.58 1.5 0.38 0.14 0.36

Table 3: Statistically Signi�cant Spatio-Temporal Signals or Signal Components

Isolated in the SVD Analysis, Enumerated in Order of Increasing Frequency, Along

With Associated Range in Frequency and Period of the Signal/Component, Local

Fractional Variance (LFV) Explained of the Associated Frequency Band, Maximum

Regional Amplitude of Pattern, Root-Mean-Square Amplitude of Pattern, Ampli-

tude of Global Mean of Pattern, and Projection of Pattern Onto Global-Mean Tem-

perature. For the latter statistic, PGLB = 1 e.g. describes spatially uniform warm-

ing or cooling, while PGLB = 0 describes complete spatial cancellation of regional

variations in a global mean. Amplitudes of variability (in Celsius) correspond to

maximum peak-to-peak cycle amplitude over the 100 year period. [From Mann and

Park (1994).]

each other, and may be associated with more complex frequency domain structure

than can be identi�ed based on spectral analysis of a �xed window of data. In this

case, the enumeration of distinct \signals" within the broader 3-7 year band seems

inappropriate. Additional insights are obtained from evolutive generalizations of the

procedure described in sections 3.1 and 3.2, or further, from a wavelet-based mul-

tivariate decomposition [Park and Mann, 1997]. It is nonetheless useful to examine

separately the high- and low-frequency ENSO peaks, which we loosely refer to as

ENSO \components" here. Table 3 itemizes the 10 signi�cant peaks isolated in the

MTM-SVD analysis.

As a crosscheck, we performed a parallel analysis using a small subset of (M =

50) gridpoints scattered evenly over the globe to estimate the e�ect of sampling in-

homogeneity on the analysis of the global temperature dataset. The resulting LFV

spectrum (Figure 19) is not signi�cantly dissimilar from that of the full (M = 449)

dataset. The most notable di�erences are greater prominence of the 2-to-3-year

timescale ENSO peaks, and a slight shift in the location of the quasidecadal peak
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(centered closer to 10 year period in the sparse dataset). We conclude that the

MTM-SVD analysis of the global temperature data is reasonably robust to sam-

pling inhomogeneity and variations in spatial sampling density. The bias introduced

by the paucity of information in data-poor regions is more di�cult to determine.

The exercises of section 3.5 suggest however that these biases probably are not too

inuential for the spatial sampling available.

Spatial and Temporal Correlations Across Time Scales

The similarity between the spatial patterns of distinct signals or frequency compo-

nents of a band-limited signal can provide insights into possible physical relation-

ships between them. The squared dot product of the spatial EOFs derived from the

MTM-SVD analysis provide such a measure of similarity between spatial patterns.

Under the assumption of Gaussian random spatial variations with ~M complex spa-

tial degrees of freedom, the statistical signi�cances of such correlations are provided

from standard tables. Table 4 indicates statistical comparisons between the dis-

tinct signals or components identi�ed. These quantitative comparisons of spatial

relationships corroborate qualitative inspection of the temperature pattern recon-

structions shown below. Patterns of temperature variability within the core 3-7 year

ENSO band (i.e., those corresponding to peaks at 2.8-to-3.0-, 3.3-to-3.4, 4.3-to-4.8,

and 5.1{5.7 year period) all share a characteristic global pattern [see e.g., Halpert

and Ropelewski, 1992] of in-phase variability throughout much of the tropics and

extratropical teleconnection patterns such as the PNA or TNH pattern over the Pa-

ci�c/North American sector [see Wallace and Gutzler, 1981; Barnston and Livezey,

1987]. The corresponding spatial EOFs are correlated at greater than 99% con�dent

level (sharing between 25% and 50% of their variance in common in each case). The

7-8 year peak has a less classical \ENSO" pattern, but does show some signi�cant

similarity with the other ENSO-band patterns, as well as with with other patterns

(e.g., the quasibiennial pattern) exhibiting a temperature signature consistent with

the North Atlantic Oscillation [NAO { see e.g., Wallace and Gutzler, 1981; Rogers,

1984; Barnston and Livezey, 1987; Lamb and Peppler, 1987]. This observation seems

to be consistent with the study of [Rogers, 1984] who observed a peak near 7.3-year

period in the spectrum of the NAO index. The spatial patterns associated with the

interdecadal 15-to-18 and quasidecadal 10-12 year signal both share a combination of

ENSO-like and NAO-like features with certain (i.e., 3.3-to-3.4- and 5.1-to-5.7-year)
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ENSO components, exhibiting spatial correlations signi�cant at >99% con�dence.

Spatial patterns associated with quasibiennial peaks centered near 2.1-to-2.3-, 7-to-

8-, and 11-to-12-year period are each dominated by an NAO-like pattern. While

some of these correlations may be spurious, there are only 45 distinct correlation

pairs, and very few should randomly exceed the 99% con�dence level given our

estimate of ~M � 20 spatial degrees of freedom in the dataset.

In contrast, a similar dot-product of the spectral EOFs or \principal modu-

lations" measures the similarity in the slow amplitude and phase modulation of

distinct signals or components. Such similarity may be indicative of a non-linear

coupling between oscillatory variations with di�erent periodicities, or simply mod-

ulation by the same long-term envelope. In the case of a a secular mode and an

oscillatory signal, a signi�cant correlation may indicate modulation of the oscilla-

tory signal by the secular variation. Under the assumption of a smoothly varying

coloured noise background, the correlations should exhibit the null distribution de-

scribing pairs of Gaussian distributed complex K-vectors. These latter dot-products

suggests a number of interesting interrelationships. The 15-18 year period inter-

decadal ENSO-like signal exhibits similar long-term temporal modulation to several

of the ENSO-band components, suggesting the possibility of a consistent long-term

modulation of ENSO during the past century. The secondary \multidecadal" secular

variation exhibits a high correlation with the envelope of the 10-12 year quasidecadal

signal, suggesting the possibility that quasidecadal oscillations in the North Atlantic

are modulated by the long-term multidecadal secular variation centered in that re-

gion. In turn, there is some evidence for a long-term modulation of the quasibiennial

oscillation by the secular \trend". Such possible relationships are discussed later on.

Secular Signals

The primary secular mode (Figure 20) describes an in-phase, global-scale secu-

lar trend in the temperature dataset. The associated spatial pattern of warming

projects strongly (94% projection) onto global mean temperature.

The maximum regional warming trend (Table 3) is � 1:7�C, while the esti-

mated global-mean warming is closer to 0.5� C. Both this mean warming and the

temporal reconstruction of the trend (inset, Figure 20) are consistent with recent

non-parametric analyses of global-mean temperature [Ghil and Vautard, 1991], in-

dicating warming most rapid from about 1920 to 1950. The continued acceleration
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Figure 13: Comparison of LFV spectrum for complete data set and for the case

where temporal gaps are present (see text) which are linearly interpolated. [From

Mann (1998).]

� , years trend > 50 15-18 10-12 7-8 5.1-5.7 4.3-4.8 3.3-3.4 2.8-3.0 � 2.2

trend 1 0 0.16 0.13 0.44 0.33 0.25 0.19 0.10 0.77y

> 50 0 1 0.67 0.87y 0.11 0.51 0.49 0.54 0.30 0.21

15� 18 0.13� 0.03 1 0.54 0.13 0.44 0.81y 0.95z 0.52 0.15

10� 12 0.00 0.06 0.37z 1 0.25 0.55 0.23 0.38 0.40 0.44

7� 8 0.13� 0.01 0.01 0.10 1 0.51 0.05 0.22 0.16 0.70�

5:1� 5:7 0.04 0.04 0.25z 0.22z 0.03 1 0.20 0.27 0.04 0.70�

4:3� 4:8 0.08 0.04 0.22z 0.01 0.04 0.33z 1 0.81y 0.25 0.04

3:3� 3:4 0.07 0.02 0.25z 0.16y 0.09 0.34z 0.32z 1 0.56 0.09

2:8� 3:0 0.13� 0.01 0.11� 0.02 0.13� 0.25z 0.42z 0.25z 1 0.07

� 2:2 0.02 0.01 0.05 0.26z 0.17y 0.06 0.11� 0.19y 0.08 1

Table 4: Squared Correlations Between Spatial and Temporal Modulation Patterns

of Distinct Signal/Component Pairs With Associated Signi�cance Levels. The top

triangle measures the similarity in the spectral EOFs or \principal modulations",

comparing the long-term envelopes of di�erent oscillatory signals or components and

indicating possible temporal relationships. The bottom triangle compares spectral

EOFs of di�erent signals or components, measuring the similarity in their spatial

patterns. Under the assumption of locally-white noise, the signi�cance levels for

these correlations are estimated from the standard distribution of the spectral co-

herence based on ~M = 20 spatial andK = 3 spectral degrees of freedom respectively.

From Mann and Park (1994).]

Symbols: � = > 90% y= > 95% z = > 99%
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Figure 14: Various spatial subsets of the domain used for testing sensitivity to

spatial sampling [From Mann (1998).]
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Figure 15: Comparison of LFV spectrum for complete spatial network along with

the various spatially-subsampled networks described in Figure 14. The numerical

vertical scale shown applies only to the full 25 gridpoint dataset. The LFV spectra

for the various spatial subsets are renormalized so that the quantiles of the null

distribution and signi�cance levels shown roughly apply to each of the subsets,

irrespective of the varying spatial degrees of freedom present.
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Figure 16: Locations of 5 degree by 5 degree grid points used in analysis. The

�lled boxes indicate the sparse more homogeneously distributed sub-network of 50

gridpoints used to test sensitivity to spatial sampling. [FromMann and Park (1994).]
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Figure 17: LFV spectrum of the global temperature data shown in Figure 16 through

frequencies slightly greater than f = 2 cycle/yr. Horizontal dashed lines denote 90%,

95%, and 99% con�dence limits from bootstrap resampling.
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Figure 18: LFV spectrum of the global temperature data set in the restricted \in-

terannual" range f = 0 to f = 0:5 cycle/year. The spectra for all 100 years (solid),

�rst 90 years only (dotted), and last 90 years only (dot-dashed) are each shown for

comparison. Horizontal dashed lines denote 90%, 95%, and 99% con�dence lim-

its from bootstrap resampling. Putative signals are noted by the indicated labels.

[From Mann and Park (1994).]
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Figure 19: LFV spectrum of the fullM = 449 global temperature data (solid) along

with that of a sparse more homogeneously distributed M 0 = 50 gridpoint data set

(dot-dashed). Horizontal dashed lines denote 90%, 95%, and 99% con�dence limits

from bootstrap resampling. [From Mann and Park (1994).]
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Figure 20: Pattern of temperature variability associated with the primary secular

mode. Solid diamonds are used to indicate grid points evolving positively with

the reference time domain signal shown in the inset (warming), while open circles

represent the few grid points evolving negatively with the time domain signal shown

(cooling). As in all subsequent plots, the symbol sizes scale the relative magnitude

of temperature variations. The absolute scale for typical and maximum regional

variations is provided by Table 3. [From Mann and Park (1994).]
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of global warming in certain regions through the 1990s is not associated, in the con-

text of our study, with long-term secular warming. Such warming could represent

a sudden, non-stationary shift to sustained ENSO-like global climate patterns [see

Trenberth and Hoar, 1995], but may also be consistent with the natural internal

uctuations of the tropical Paci�c system [Cane et al, 1997]. This is highlighted

by the fact that a marked positive recent departure from the low-frequency global

warming trend is found in the far eastern tropical Paci�c (within the reach of pos-

itive El Nino SST anomalies), but not in the more central subtropical Paci�c (see

section 4.2, Figure 30). Much of the warmth of the 1980s (but not the 1990s) is, in

contrast, explained by interdecadal uctuations (see below).

Though associated with a clear global warming signal, the spatial pattern is

variable, with certain grid points actually cooling slightly. Such regional departures

from the average warming of � 0:5�C suggest the probable existence of associated

atmospheric circulation anomalies accompanying the warming signal. Such circula-

tion anomalies are addressed more directly in the joint temperature/SLP analysis

of section 4.2. The strongest warming (� 1:7�C) is observed along the margin

of Greenland, which could indicate the inuence of a positive ice-albedo feedback.

Further such evidence is provided by the changes in seasonality of temperature de-

scribed by Mann and Park [1996a]. For comparison, a calculation of the simple

linear trend in the gridpoint data yields a similar pattern, albeit with a moderately

higher estimated warming signal (compare the resultings values TMAX = 1:87�, mean

region warming TRMS = 0:59�, and average global warming TGLB = 0:57� with their

corresponding values in Table 3), owing largely to the statistical leverage of recent

decadal-scale warming in a non-robust least-squares trend estimation.

In contrast to the primary mode, the signi�cant secondary secular mode de-

scribes a spatially heterogeneous multidecadal \cycle" centered largely in the North

Atlantic (Figure 21) which projects little (10%) onto global mean temperature. To

some extent the dissimilarity in the features of the two secular modes is guaranteed

by their mutual orthogonality, much as are the modes of a classical time-domain

PCA. The principal mode tends to capture the in-phase global component, while the

secondary mode favours the dominant mode of variation in the the spatially hetero-

geneous residual (see e.g., the synthetic PCA experiment of section 2.2). Some lin-

ear combination of the two modes (i.e., rotation) or other statistical decompositions

could possibly provide a more physical decomposition. Schlesinger and Ramankutty
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Figure 21: Pattern of temperature variability associated with the secondary secular

mode of variation. High-amplitude variability is con�ned largely to the North At-

lantic. Each grid point evolves with the same 70 � 80 year \oscillation," shown in

the inset, di�ering only in magnitude or sign. Solid diamonds evolve in phase with

the North Atlantic, while grid points with open circles vary oppositely. A minimum

slope constraint was invoked for the temporal signal reconstruction. [From Mann

and Park (1994).]
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[1994] for example identi�ed a residual multidecadal oscillatory component in the

global temperature record after removing a model predicted trend due to anthro-

pogenic forcing. Only analyses of longer datasets (e.g., proxy data { see section 4.3)

can more objectively separate out possible anthropogenic trends and low-frequency

oscillatory features of the climate.

The cycle-like characteristic of the secondary secular variation is poorly con-

strained by the short duration of the data set, and the simple boundary constraints

invoked. However a more objective signal reconstruction approach based on the

optimal weighting of various boundary constraints (see section 4.2) favours a single

�70 year multidecadal cycle of variation, and long-term proxy data (section 4.3) of-

fer additional evidence for a multidecadal or \century-scale" oscillatory mode with a

50-70 year timescale. The pattern of this multidecadal variation (Figure 21) exhibits

signi�cant amplitude in the high-latitude North Atlantic (as large as 1.4�C, see Ta-

ble 3), in-phase with smaller amplitude variability in the United States, Northern

Europe, and the Mediterranean region, and out of phase with variability elsewhere

over the globe. The cycle of warming in the North Atlantic from roughly 1890-1940,

and subsequent cooling, is consistent with the long-term trend in North Atlantic sea

surface temperature and air temperatures determined elsewhere [Deser and Black-

mon, 1991; Kushnir, 1994; Schlesinger and Ramankutty, 1994]. Large temperature

variations in the high-latitude North Atlantic supports a possible connection with

century-scale variability in deep water production [e.g., Stocker et al, 1992]. The

opposite sign of anomalies in the North and South Atlantic, consistent with the

inter-hemispheric contrast pattern noted by Folland et al [1984 is consistent with

changes in cross-equatorial heat-ux that would be expected to arise from variabil-

ity in the thermohaline circulation. The near cancellation of the pattern in a global

average suggests a process that largely redistributes heat over the Earth's surface.

Additional dynamical insight is o�ered by the analysis of associated atmospheric

circulation variations in section 4.2, while better statistical constraint on the appar-

ent multidecadal oscillation is provided by the multiproxy data analysis of section

4.3.

Interdecadal Signal

The interdecadal 15{18 year period signal shown in Figure 22 has a pattern con-

sistent with that of the pair-coherence map of Mann and Park [1993] and probably
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Figure 22: Pattern associated with the 15-to-18-year interdecadal mode, with zero

phase (e.g., tropics) evolving with the time domain signal shown in the inset. Max-

imum pattern average warmth is coincident with tropical warmth. The size of the

vectors indicates relative magnitude of temperature variations (absolute scale is pro-

vided in Table 4). Vector orientation indicates the relative temporal lag at each grid

point. We de�ne a zero phase vector (i.e., grid points with a vector pointing right-

ward, toward \3 o'clock," for example, much of the tropics in this case) as evolving

positively with the time domain signal shown in the inset. Counterclockwise rota-

tion in the spatial pattern indicates positive lag, while clockwise rotation represents

negative relative lag or \lead". A rotation of 360 degrees corresponds to the period-

icity of the mode (� 17 years in this case). All grid points share the same long-term

modulation, with the �17 year carrier oscillation shifts forward or backward with

the phase lags indicated in the spatial pattern. For example, grid points with vec-

tors at \12 o'clock" experience maximum warming at a 90� � 4-year lag relative to

peak tropical warming. Grid points at \6 o'clock" experience maximum warming at

� 4 years before peak tropical warming, and grid points at \9 o'clock" experience

maximum cooling simultaneous with peak tropical warming. The pattern average

variability is nearly in phase with the tropical variability, so that peak projection

onto global warmth corresponds to peak tropical warmth. [From Mann and Park

(1994).]
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corresponds to the bidecadal temperature signal identi�ed by Ghil and Vautard

[1991] in global-average temperature. The spatial pattern resembles, at least su-

per�cially, that of ENSO, with high-amplitude, largely in-phase tropical warming

or cooling, and similar inferred extratropical teleconnection patterns. Despite sig-

ni�cant cancellation in the global average, this mode is associated with a sizable

peak-to-peak TGLB � 0:2�C, with a maximum global warm anomaly coincident with

tropical warming. The time domain signal (inset of Figure 22) suggests that the

anomalous warmth of the 1980s was associated, at least in part, with a large positive

excursion of the interdecadal oscillation. Note, however, that global warming in the

interdecadal oscillation is associated with simultaneous cooling in the southeastern

United States and Europe.

In addition to exhibiting spatial correlations at >99% con�dence with three of

the four ENSO spatial patterns (Table 4), the interdecadal mode appears to be as-

sociated with a modulation common to two of the ENSO-band components. The

signal thus appears to exhibit at least a limited connection with long-term variations

in ENSO, as has been suggested in previous studies of interdecadal climate variabil-

ity [Trenberth, 1990; Tanimoto et al., 1993]. This signal has been independently

observed in studies of the South Atlantic [Venegas et al, 1996], and may also related

to signi�cant regional climate impacts such as inuences on Sahel rainfall [Folland

et al., 1986] and the dynamic topography of the oceans [Unal and Ghil, 1995].

A variety of mechanisms have been o�ered to explain such interdecadal � 15�30

oscillatory behavior of the climate, including external astronomical forcing [e.g.,

Royer, 1993], high-latitude ocean-atmosphere interactions [e.g., Darby and Mysak,

1993; Mysak and Power 1992], non-linear instabilities in the global thermohaline

circulation [e.g. Chen and Ghil, 1995] and extratropical ocean-atmosphere feedback

mechanisms [e.g., Trenberth and Hurrell, 1994; Latif and Barnett, 1994 { henceforth

LB94; Von Storch, 1994], intrinsic tropical mechanisms [Graham, 1994] and coupled

tropical/extratropical ocean-atmosphere mechanisms [Gu and Philander, 1997] in

the Paci�c ocean. Possible mechanistic explanations of the observed variability are

further explored in section 4.2.

Quasidecadal Signal

A \quasidecadal" signal with 10-to-12-year periodicity (Figure 23) exhibits a tem-

perature pattern with large regional amplitude in the North Atlantic, exhibiting a
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Figure 23: Spatial pattern of variability associated with the 10-to-12-year decadal

mode, with the zero phase signal (i.e., arrow pointing directly right { e..g., Great

Britain, most of southeastern United States) corresponding to the time series shown

in the inset. Symbol conventions are similar to Figure 22. [From Mann and Park

(1994).]
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quadrupole phase pattern of warming and cooling in di�erent regions bordering the

Atlantic basin. This pattern is reminiscent of an NAO inuence. Such a quasidecadal

signal has independently been observed in other studies North Atlantic climate data

[Deser and Blackmon, 1993; Hurrell, 1995]. The surface temperature pattern tends

to cancel, however, in a large-scale average, exhibiting a relatively weak projection

(18 %) onto global-mean temperature. It is thus not surprising that such a signal is

either undetected [Folland et al., 1984; Ghil and Vautard, 1991] or weakly detected

[Allen and Smith, 1994; Mann and Lees, 1996] in studies of global-mean tempera-

ture, but emerges more distinctly in regional studies of continental United States

temperature [Mann et al, 1995a; Dettinger et al, 1996], SLP [Mann et al, 1995a],

precipitation [Currie and O'Brien, 1992] Indian precipitation [Vines, 1986; Mitra

et al., 1991], and both tropical [Houghton and Tourre, 1992; Mehta and Delworth,

1995; Chang et al, 1997] and North Atlantic [Deser and Blackmon, 1993] regional

climate data. There is some debate in the literature over whether this decadal signal

is or is not characterized by a cross-equatorial dipole in Atlantic sea surface tem-

peratures [Houghton and Tourre, 1992; Mann and Park, 1994; Mehta and Delworth,

1995; Chang et al, 1997; Tourre et al, 1997]. Where there is spatial sampling in the

Atlantic, our pattern exhibits fairly clear evidence for a nearly 180 degree reversal in

phase of surface temperature variations north and south of the equator, supporting

Chang et al [1997] and Tourre et al [1997]. The signi�cant relationship (95% sig-

ni�cance level-see Table 4) between the long-term modulation of this quasidecadal

oscillation and the multidecadal secular variation in the North Atlantic described

above, suggests that the longer multidecadal cycle of warming and cooling in the

North Atlantic may modulate the amplitude of these higher frequency quasidecadal

oscillations. In contrast, the signal is not signi�cantly correlated (<50% con�dence

level) with the � 11-year sunspot cycle, casting doubt on a simple linear relationship

between decadal-scale solar forcing and similar timescale surface climate variations

[e.g., Currie and O'Brien, 1992]. Joint analysis of historical sea-level pressure and

surface temperature, discussed in section 4.2, suggests possible mechanisms for the

quasidecadal oscillation.

ENSO Signal

The MTM-SVD analysis of the global temperature data reveals clear ENSO-band

signals (Figure 24), and con�rms a rough division of the ENSO-related variability
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Figure 24: Spatial pattern associated with the 2.8-to-3.0-year (top) and 5.7-to-5.7

year (bottom) \ENSO" components. Symbol conventions are similar to Figure 22,

with zero phase (e.g., much of the tropics) coincident with the time domain signal

shown in the inset for both cases. [From Mann and Park (1994).]
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into higher-frequency (2.8-to-3.0- and 3.3-to-3.4-year period) and lower-frequency

(4.3-to-4.8- and 5.1-to-5.7-year period) bands, consistent with the notion of distinct

high- and low-frequency bands of ENSO [e.g., Keppenne and Ghil, 1992; Dickey et

al, 1992]. A more elaborate time-dependent description of the frequency-domain

characteristics of ENSO is provided in the analysis of section 4.2. The spatial pat-

terns (Figure 24) associated with the ENSO spectral peaks are similar to the ENSO

temperature pattern identi�ed by Halpert and Ropelewski [1992], henceforth HR92.

For example, both HR92 and our 2.8{3.0 year ENSO component show a pattern

of roughly in-phase tropical warming coincident with warming and cooling, respec-

tively, in the northwest and southeast United States. Such behavior is consistent

with the positive phase of a PNA or TNH circulation anomaly pattern that has been

argued to be favoured during tropical warm events [Horel and Wallace, 1981; Livezey

and Mo, 1987]. Both patterns also share warming in eastern Europe coincident with

cooling in central Asia and slight cooling in western Europe, as well as cooling

in the northern Paci�c that is in phase with warming in the tropical western Pa-

ci�c. This latter pattern resembles a similar Western Paci�c Oscillation or \WPO"

pattern. Though much of warming during ENSO is produced by tropical ocean-

atmosphere heat exchange, some of this heat is transported poleward by a variety of

processes. Hence there is a tendency for warming, for example, in middle as well as

tropical latitudes during or shortly following warm events, even though anomalous

advection can produce cooling in certain regions. Such dynamics are responsible

for the non-trivial impact of ENSO events on global mean temperature. Each of

the ENSO patterns have signi�cant projections onto global temperature (Table 3)

, with global-average peak-to-peak uctuations TGLB � 0:10�C for each component,

and somewhat larger excursions for the sum over all components. Other workers

[Jones, 1989; Angell, 1990] have noted similar interannual variations in global aver-

age temperature associated with ENSO.

Each of the ENSO component patterns share features of in-phase tropical warm-

ing with extratropical patterns consistent with combinations of the WPO, PNA, and

TNH patterns. The lowest frequency (5.1-to-5.7 years ENSO) component exhibits

the most prominent NAO signature, consistent with Rogers [1984] who identi�ed a

peak near 6-year period in the cospectrum of the Southern Oscillation and NAO.

While the pattern for each component is by de�nition linearly reversed for negative

and positive excursions, the sum of the components which interfere constructively
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or destructively to describe the actual \warm" and \cold" events [see e.g., the total

signal reconstructions shown later] need not exhibit an equivalence between large

negative and positive reconstructed events. In each of our ENSO patterns, maximum

global warm anomalies coincide with tropical warm events, while the maximum cold

anomalies coincide with cold events.

Quasibiennial Signal

A quasi-biennial (� 2:2-year period) signal is isolated in the global temperature data

(Figure 25) consistent with the independent detection of such a signal in North-

ern hemisphere SLP [Trenberth and Shin, 1984], North Atlantic SLP, winds, sea

level pressures [Deser and Blackmon, 1991] and air temperatures [Gordon et al.,

1992], and predominantly north-south variations in U.S. temperature [Dettinger et

al, 1996]. The signal exhibits a prominent NAO temperature pattern as well as other

extratropical regional anomalies, and is associated with sizable regional variations

(0.38�C mean regional amplitude variations), as well as a signi�cant peak-to-peak

global average variation (0.14�C). As discussed by [Trenberth and Shin, 1984] and

below in section 4.2, the surface quasibiennial signal shows no obvious relationship

with the stratospheric quasibiennial oscillation (QBO) of similar timescale, although

such connections have been suggested with atmospheric data higher in the tropo-

sphere [Labitzke and van Loon, 1988] or indirectly, through modulation of ENSO

[Barnston et al., 1991]. Interestingly, there is evidence of modulation by the same

envelope which modulates the lower-frequency ENSO variability (precisely those

ENSO-band components, the 5.1{5.7 years and 7-8 years components which exhibit

a notable NAO pattern { Table 4). These correlations are only marginally (�90%)

signi�cant, however, and may well be spurious.

Single-Gridpoint Reconstructions

Figure 26 shows the time-domain signal reconstructions for several chosen gridpoints,

based on the sum over each of the spatiotemporal signals or signal components iso-

lated in the MTM-SVD analysis. Also shown are the interannual lowpassed (periods

longer than 2 years retained) raw data for comparison. The North American east

coast gridpoint (Figure 26-top) is dominated by the secular warming trend (18%

of the lowpassed \interannual" data variance) and interannual (ENSO and quasi-

biennial) uctuations (� 13% of the interannual variance), while the quasidecadal
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Figure 25: Pattern of variability associated with the 2.1-to-2.3-year quasi-biennial

mode. Zero phase variability (e.g., England) evolves positively with the time series

shown in the inset. Symbol conventions are similar to Figure 22. [From Mann and

Park (1994).]
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Figure 26: Speci�c gridpoint time domain signal reconstructions for chosen regions

determined from summing over each of the spatiotemporal signals or components

isolated in the analysis. The reconstructed signals are shown (solid curves) along

with the interannual lowpass of the raw data (dotted curves). (a) North American

East Coast Gridpoint (containing New York City). (b) Tropical Paci�c Gridpoint

(containing main island of Hawaii). c) South American Grid point containing San-

tiago, Chile. [From Mann and Park (1994).]
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signal describes about 2% of the interannual variance. The total reconstruction

describes 34% of the variance. The Hawaiian gridpoint (Figure 26-middle) is dom-

inated by the secular warming signal (61% of the interannual variance), but with

a large share of variance also described by the interdecadal signal (� 8%). 74% of

the total lowpassed variance is explained by the reconstructed signal. Finally, the

South American Paci�c-coast gridpoint (Figure 26-bottom) is in a region where the

direct inuence of El Nino can be expected. The reconstruction, not surprisingly, is

dominanted by the interannual ENSO-band signals (� 20% of the interannual vari-

ance). All strong El Nino events [e.g., Quinn and Neal, 1992] are clearly captured in

the reconstruction. Signi�cant variance is also described by both secular variations

(� 5% and 4%) and the interdecadal signal (� 6%). The total reconstructed signal

describes 35% of the total interannual variance.

The interannual variance explained by the total signal reconstructions range over

�1% to �75% for the M = 449 gridpoints in the analysis, describing � 40% of the

total interannual variance in the multivariate dataset. 16% of the total variance is

accounted for by the two secular variations, so that the interannual and decadal scale

signals describe an important share of the low-frequency multivariate data variance.

The variance not explained is attributed in our paradigm to a smoothly varying

coloured noise background. However, some of that variance may be attributed to

episodic or event-like signals which do not exhibit clear frequency-domain structure

(e.g,. the impacts of explosive volcanism on surface temperatures { e.g., Bradley and

Jones, 1992]), non-linear or chaotic features of variability [e.g., Lorenz, 1990] which

are not captured well by a linear frequency-domain decomposition, and in the present

analysis the imposition of a priori (and hence, not in general optimal) boundary

constraints in temporal signal reconstruction from frequency-domain information.

An attempt is made to improve upon the latter limitations in the analysis described

in the following section.

Summary

Using 100 years of global temperature anomaly data, the MTM-SVD method iso-

lates coherent spatio-temporal oscillations of global climate variability. Organized

interannual variability appears to be associated either with ENSO, or extratropical

patterns that chiey involve an NAO pattern. Secular variance is dominated by

a globally coherent trend, with nearly all grid points warming in phase at varying
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amplitude. A smaller, but signi�cant, share of the secular variance corresponds

to a pattern dominated by warming and subsequent cooling in the high latitude

North Atlantic with a roughly centennial time scale. Spatial patterns associated

with signi�cant peaks in variance within a broad period range from 2.8 to 5.7 years

exhibit characteristic ENSO patterns. A recent transition to a regime of higher

ENSO frequency is suggested by our analysis. An interdecadal mode in the 15{18

year period range appears to represent long-term ENSO variability. This mode has

a sizable projection onto global-average temperature, and accounts for much of the

anomalous global warmth of the 1980's. A quasibiennial mode centered near 2.2

year period and a mode centered at 7{8 year period both exhibit predominantly a

North Atlantic Oscillation (NAO) temperature pattern. A \decadal" mode centered

on 11{12 year period also exhibits an NAO temperature pattern, and may be mod-

ulated by the century-scale North-Atlantic variability. Decadal variability has weak

impact on global-average temperature, but gives rise to a strong redistribution of

surface heat.

4.2 Northern Hemisphere Joint Surface Temperature and Sea

Level Pressure Data

The potential dynamical insights possible from analyzing the joint relationship be-

tween surface temperature and atmospheric circulation are well established [e.g.,

Namias, 1983; Cayan, 1992ab]. Here we investigate spatiotemporal signals in joint

�elds of surface temperature and SLP in the Northern hemisphere which provide

near uniform coverage from the tropics through the sub-polar regions for almost

a century. A variety of dynamical inferences are possible in the case of the joint

�eld analysis, complementing the observations from the global temperature analy-

sis described in the previous section. Simple relationships between SLP anomaly

patterns, inferred surface circulation anomalies, and associated relative advective

e�ects (warming or cooling) may suggest a largely passive response of the temper-

ature �eld to circulation anomalies. Cold-season warming/cooling along coastlines

associated with anomalous inferred onshore/o�shore circulation suggests variability

in the degree of continental vs. maritime inuence. SST anomalies that do not

reect a passive response to atmospheric circulation anomalies may indicate under-

lying changes in oceanic circulation and ocean-atmosphere exchange. An analysis

of the signatures provided by the joint spatial patterns thus provides insight into
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the underlying mechanisms of organized climate variations. Comparison with recent

coupled ocean-atmosphere model simulations allows us to determine if, beyond em-

pirical statistical inferences, there is some physical motivation for placing con�dence

in an apparent climatic signal.

The data used consists of the land air and sea surface temperature anomaly

dataset described and used in the section 4.1 [Jones and Bri�a, 1992; Jones, 1994],

and gridded Sea Level Pressure data on a similar but staggered 5o � 5o grid in

the Northern Hemisphere [Trenberth and Paolino, 1980 { this dataset is continually

updated through the NCAR archive]. We con�ne our analysis to the latitude band

17.5o-72.5oN, allowing fairly thorough spatial coverage for both �elds. We use the

95 year (N = 1140 months) interval 1899-1993 for which both SLP and temperature

data are available. Only gridpoints with nearly continuous monthly sampling (very

few gaps, and no single gap longer than 12 months) are used, gaps �lled as earlier by

simple interpolation. This criterion for selection yields a set ofM = 601 temperature

gridpoints and P = 792 SLP gridpoints, nearly covering the subtropical-to-subpolar

region of the Northern Hemisphere (Figure 27), with some relatively modest spatial

gaps in the temperature dataset.

Possible sources of bias in the temperature data were discussed in section 4.1.

The gridded SLP exhibit potential biases of their own. The SLP �eld for any given

month represent the spatial interpolation of often sparse observations by hand drawn

analyses. These data are of somewhat questionable quality during the earliest (pre

1922) part of the century and during World War II. See Trenberth and Paolino,

[1980] for a detailed discussion of the quality and potential sources of bias in this

data. From a spatial point of view, the data quality is poorest in high-altitude

regions with strong cold-season inversions (e.g., large parts of Asia) where sea-level

reductions of surface measurements may be awed. Thus, while there is potentially

useful information in these data throughout the 20th century, inferences that depend

heavily on the behavior of the data early in the period (such as the spatial details of

long-term trends) must be caveated by consideration of the potential data quality

problems. Many potential sources of bias, however, are diminished in inuence by

our seeking organized, dynamically consistent variations in both temperature and

SLP �elds. Errors that are isolated in time, for example (e.g., data problems asso-

ciated with World War II) should not have a large inuence on our signal detection

or reconstruction procedure.
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Figure 27: Locations of gridpoints used in analysis, with locations of temperature

data indicated by \x"s, and SLP data indicated by \o"s. The grid has latitudinal

extent 15o-70o N and longitudinal extent -180E to 180E, with SLP gridpoints located

every 5 degrees and temperature gridpoints staggered 2:5 degrees. The positions of

the Greenwich meridian and international dateline, as in following plots, is shown

for reference. [From Mann and Park (1996b).]
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Here we apply a modi�ed version of the standard MTM-SVD analysis described

in section 3.1, with the conventional choices K = 3 spectral degrees of freedom

and bandwidth parameter p = 2, to the 95 years of overlapping monthly data for

both SLP and temperature data �elds. The basic MTM-SVD procedure is modi�ed

to determine the dominant modes of narrowband variability in two �elds { surface

temperature and SLP { simultaneously. This joint mode analysis is accomplished

by application of the MTM-SVD analysis to the aggregate data matrix for the two

�elds, and is a frequency-domain analog of the \Combined Principal Component

Analysis" or \CPCA" approach described by Bretherton et al [1992] and applied

by Wallace et al [1992] to the eigendecomposition of joint atmospheric data �elds.

In the joint �eld MTM-SVD analysis, each constituent series is standardized for

the analysis. To account for the small di�erences in the sizes of the two datasets

(M = 601 temperature gridpoints vs P = 792 SLP gridpoints), the weights on

the corresponding entries in the data matrix are adjusted so that the two �elds

contribute equal total standardized variance. Temporal signal reconstruction is per-

formed based on the objective boundary constraints described in section 3.2. Signals

for which time-evolving frequency structure is detected are reconstructed with the

evolutive signal reconstruction technique (section 3.2).

It is appropriate here to note some possible caveats regarding multivariate joint

�eld decompositions. In the context of convention time-domain PCA decomposi-

tion, the relative strengths and weaknesses of alternative methods of decompositions

for joint or \coupled" �elds is explored in some detail by Bretherton et al [1992].

Potential de�ciencies and limitations of joint �eld generalizations on time-domain

PCA (which are unfortunately sometimes referred to misleadingly as simply \SVD")

have been pointed out recently by a number of authors [e.g. Newman and Sardesh-

mukh, 1995; Cherry, 1997]. The primary limitation is that the joint �eld patterns

obtained are not robust, depending quite sensitively, for example, on the relative

variance contributions of the two �elds. This sensitivity can be understood in terms

of the inherent ambiguities in specifying an objective rotation of EOFs in conven-

tional PCA (a nice explanation of the relationship between joint �eld PCA and

rotated PCA analysis is provided by Cherry [1997]). In fact, generalizations related

to varimax rotation have been suggested as a possible means of specifying more

objective joint pattern decompositions [Cheng and Dunkerton, 1995]. Nonetheless,

much as MTM-SVD largely removes the ambiguity associated with rotation (recall
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the discussion of section 3.4), the narrowband decomposition speci�ed by MTM-

SVD projects joint spatial patterns which are quite robust, being widely insensitive

to variations in the relative contributions of the two independent �elds. This point

is discussed further below in the context of application to the joint SLP/surface

temperature dataset.

LFV spectra

The LFV spectrum for the joint �eld analysis (Figure 28) is consistent with that ob-

tained in the analysis of global temperature data described in section 4.1 (see Figure

18), with signi�cant variance peaks at the quasibiennial (2:1� 2:2 year) timescale,

within the 3-7 year ENSO period band, and at \quasidecadal" (10-11 year period)

and \interdecadal" (16-18 year period) timescales. Two signi�cant modes are also

identi�ed within the secular band corresponding to variability on timescales � > 48

year in the 95 year dataset. It is worth noting that the quasidecadal and interdecadal

peaks exhibit a less distinct signal separation than was evident in the corresponding

LFV spectrum of the global temperature data; this is not especially surprising given

that the di�ering spatial signatures of the two signals were most evident (compare

Figures 22 and 23) in the tropical and southern latitudes not present in the sam-

pling of the joint data �elds analyzed here. A restricted sensitivity test (see Figure

28, top) using 85-year data sub-segments long enough to resolve the secular and

relatively closely spaced quasidecadal and interdecadal peaks demonstrates relative

stability in the signi�cance of the peaks detected in the analysis of the full 95 year

dataset. For the interannual signals, a more liberal sensitivity test or \evolutive

analysis" can be performed, as described below. The LFV spectrum was further

found to be similar whether the MTM-SVD decomposition was performed on the

two �elds (SLP and temperature) with equal contributions of variance, or performed

on the temperature data alone with the resulting signals linearly projected onto the

SLP �elds. Somewhat di�erent results were obtained when the analysis was per-

formed on the SLP �eld alone, which we attribute to the questionable quality of

the SLP data (especially early in the 20th century), which limits their usefulness by

themselves for signal detection and reconstruction.

Comparison of LFV spectra for all-seasons, warm- and cold-season data (Figure

28, bottom) suggest that secular and interdecadal signals are seasonally robust, al-

though the spatial signature of these signals, mostly in mid- and high-latitudes, are
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Figure 28: (top) LFV spectrum for the 1140 month (95 year) joint surface temper-

ature and SLP dataset. Horizontal dashed lines denote median (50%), 90%, 95%,

and 99% con�dence limits from bootstrap resampling. (bottom) Comparison of

LFV spectrum for all-months and cold and warm season analyses. The numerical

vertical scale and signi�cance levels shown apply to the all-months analyses. The

LFV spectra for the cold and warm-season only analyses are slightly renormalized

(by the factors � 1:02 and 0:98 respectively) so that the quantiles of the null distri-

bution and signi�cance levels shown apply roughly for each case, even though the

e�ective number of degrees of freedom in the sample varies between the two distinct

seasonal windows. [From Mann and Park (1996b).]

86



shown below to display seasonally-speci�c features. The interdecadal signal appears

to derive its strong (> 99%) signi�cance in the all-seasons analysis from more mod-

erate amplitude, but consistently signi�cant expression, during both seasons. In

contrast, the quasidecadal signal appears as a distinctly cold-season phenomenon,

as prominent as the interdecadal signal during that season, but completely absent

in the warm season. The ENSO-band variance peaks show some distinct di�er-

ences between the all-seasons and seasonal analyses. The quasibiennial signal is

signi�cant during both independent seasons, but is clearly stronger during the cold

season (we have checked, through analysis of synthetic examples, that no signi�cant

bias is introduced by the proximity of quasibiennial frequencies to the fN = 0:5 cy-

cle/year Nyquist frequency in the case of these seasonal analyses). It is possible that

a seasonally-persistent signal is only detectable above noise at certain times in our

analysis. For example a low-frequency carrier signal in tropical SST may only lead

to a larger scale expression during the winter season when high-amplitude extrat-

ropical circulation anomalies are induced by associated tropical heating anomalies.

Since tropical coverage in our spatial sampling is marginal, such a signal may not be

detectable during the warm season, as the associated tropical carrier signal would

be missed. Such limitations should be kept in mind. An independent analysis of

the spatial and temporal patterns for both seasons provides insight into such issues.

An evolutive LFV spectrum (Figure 29) was calculated using a N = 40 year moving

window through the dataset. This choice of window width admits a frequency reso-

lution 0:10 cycle/year so that the quasidecadal and interdecadal peaks of Figure 28

are not distinguishable, and only periods shorter than 20 years can be con�dently

separated from secular variations. The relative stability of interannual signals, and

the potential time-dependence of the amplitude and frequency characteristics, can

however be tested. A 40 year window, allows roughly one phase discontinuity per

13 years. Thus, low-frequency (5-7 year timescale) ENSO variability is assumed to

maintain coherence (though varying in amplitude) over 2-3 \cycles". In contrast,

the quasibiennial oscillation is statistically modeled as being phase-coherent (and

varying slowly in amplitude) over roughly 5 cycles with a 40 year window, which may

imply a physically unrealistic timescale of coherence. For this signal we employed

(see below) a somewhat shorter 20 year window in evolutive time-reconstruction of

the signal. A alternative wavelet generalization of the MTM-SVD approach [Lilly

and Park, 1995; Park and Mann, 1997] allows for an automatic scaling of period
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Figure 29: Evolutive LFV spectrum based on performing the SVD analysis in a

moving 40 year window for (top) all seasons, (bottom-left) cold-season, (bottom-

right) warm-season. The amplitude of the spectrum as a function of time (center of

moving window) and frequency is shown with the indicated grayscale, with con�-

dence levels associated with the values given in Figure 28. Only the frequency range

resolvable from secular variations (f > 0:05 for a 40 year moving window) is shown.

[From Mann and Park (1996b).]
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and assumed phase-coherence timescale.

In the all-months analysis (Figure 29, top), there is clear evidence of organized

frequency-domain structure within the ENSO band, with two dominant bands of

variability clustered around 3-4 year period and 5-7 year period bands, that exhibit

appreciable frequency and amplitude modulation. This behavior is approximated

in the full window analysis by amplitude-modulated statistically signi�cant quasi-

oscillatory components centered near 3, 4, 5, and 7 year periods (see .3, \ENSO

Signal" of section 4.1). A parsimonious picture of two distinct low-frequency (\LF")

and high-frequency (\HF") bands of ENSO-related variance is thus indicated in the

evolutive analysis. This description suggests a degree of frequency-domain organi-

zation which belies a simple episodic picture of ENSO, and reinforces the utility

of a frequency-domain analysis of ENSO variability. The cold- and warm-season

only analyses show streaks of variance within these two same dominant bands, but

the relative lack of frequency domain structure in these cases relative to the all-

months analysis, implies a signal that is not simply phase-locked to the annual cycle.

Nonetheless, the separate cold- and warm-seasonal signal reconstructions are essen-

tial to understanding the relationship between tropical and extratropical expressions

of the signal. The seasonal analyses substantiate the cold-season dominance of the

quasibiennial signal, and reveals a drifting trend towards higher frequency during

this century. This frequency modulation is consistent with the relationship that was

observed between secular warming and the envelope of the �xed-frequency recon-

struction of the quasibiennial signal in the global temperature analysis (see section

4.1, \Quasibiennial Signal" and Table 4).

Secular Signals

The primary secular mode (Figure 30), accounts for 77% of the near zero-frequency

variance in the joint SLP-temperature dataset, and is associated with the secular

trend in the global temperature data (i.e., the global warming signal of section 4.1,

Figure 20). The warming pattern is evident in both cold and warm-seasons, although

certain regions show a marked seasonal-dependence. For example, secular warming

in eastern Asia and the North Atlantic is present only during the cold season, which

might be related to winter land and sea-ice albedo e�ects.

The warming is coherent with regional SLP anomalies that imply altered at-

mospheric circulation patterns. In the southeastern U.S., the presence of enhanced
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Figure 30: Spatial and temporal pattern of primary secular mode. (top) Time

reconstructions for reference temperature gridpoints in the (i) central subtropical

and (ii) eastern tropical Paci�c, along with 2-year smoothed raw gridpoint data.

(middle) Cold-season and (bottom) warm-season spatial pattern. As in all similar

subsequent spatial plots, temperature anomalies are indicated with the color scale

shown. SLP patterns are contoured in units of millibars (mb), and reference grid-

points are indicated by a box (temperature gridpoint) or boxed \x" symbol (SLP

gridpoint).
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cold-season cooling and warm- season warming might be related to anomalous cir-

culation patterns (e.g., a trough-like trend over North America discussed elsewhere

by Mann et al [1995a]) that favors a more continental inuence in the region. Over

the North Atlantic, a winter season north-south trend resembles the reverse of the

NAO pattern [see Deser and Blackmon, 1993]. This pattern could explain some of

the asymmetry in warming along the western and eastern margins of the North At-

lantic basin, although changes in heat transport by the Gulf Stream have also been

speculated by Deser and Blackmon [1993]. Qualitatively similar circulation anoma-

lies have been variously observed in GCM simulations of the climatic response to

greenhouse gas forcing [IPCC, chapter 6, 1996; Oglesby and Saltzman, 1992; Mar-

shall et al., 1994]. Other circulation anomalies are suggested. The questionable

quality of the earlier SLP data, however, demands a cautious interpretation of long-

term trends in SLP. The pronounced SLP anomalies near Northern Japan/Sea of

Okhotsk, for example, correspond to the discontinuous early behavior of a small

number of gridpoints.

The secondary secular mode (Figure 31) accounts for a lesser, but nonetheless

signi�cant, 21% share of the secular band variance. This mode is associated with

the multidecadal pattern of high-amplitude warming and subsequent cooling in the

North Atlantic isolated in the global temperature data (section 4.1). The objective

time-domain signal reconstruction procedure employed in this analysis favours a

roughly 75 year period \oscillation" timescale. This timescale, though poorly esti-

mated in the context of a single secular variation, is consistent with persistent 50-100

year multidecadal/century-scale oscillations in proxy climate data (see section 4.3).

Arguments for a relationship with the thermohaline circulation are further strength-

ened here by the joint relationship between sea surface temperatures and overlying

SLP patterns. Delworth and collaborators [Delworth et al, 1993; 1997] have demon-

strated that century timescale (40-80 year period) oscillatory behavior can arise from

climate mechanisms involving the thermohaline circulation, and perhaps coupled

ocean-atmosphere processes, based on a 1000 year coupled ocean-atmosphere model

simulation. In that study, a pattern of anomalously warm SSTs in the mid-latitude

and polar North Atlantic, and weaker cold anomalies in parts of tropical/subtropical

North Atlantic, was associated with the enhanced-thermohaline circulation phase of

the oscillation. The enhanced circulation state was in turn accompanied by a pattern

of negative high-latitude and positive low-latitude SLP anomalies over the North
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Atlantic. Whether the atmospheric pattern is simply a passive response or an in-

trinsic component to the underlying feedback system remains to be established. The

opposite features were associated with the weakened state of thermohaline circula-

tion.

We �nd additional support for such a coupled pattern in the multidecadal signal

isolated here. The North Atlantic regional features of the signal (consistent with

those isolated in the associated global temperature pattern) con�rm the compari-

son drawn by Kushnir [1994] between observed North Atlantic multidecadal varia-

tions and the multidecadal oscillations patterns of Delworth et al [1993 { henceforth

DEL93]. We �nd a pattern of surface temperature variability in the North Atlantic,

evident in both cold and warm seasons, that resembles the surface temperature pat-

terns of the DEL93 signal. Furthermore, consistent with DEL93, we �nd a persistent

relationship between anomalous warm SSTs in the high-latitude North Atlantic and

anomalous low SLP over part of the polar North Atlantic (Labrador Basin/Ba�n

Bay region). However, a convincing similarity is only found during the warm season,

during which low pressure presides over the entire polar North Atlantic region dur-

ing the warm SST phase of the signal. Thus, the agreement between the observed

and modeled century-scale signal is imperfect. The substantial opposite-sign sur-

face temperature anomalies over much of Eurasia during the cold-season (note that

the cold-season dominates the pattern of the all-seasons global temperature analysis

described by Figure 20) appears to be related to a breakdown of mid-latitude west-

erlies in that region during the warm-North Atlantic phase inferred from the SLP

pattern, associated with a decrease in their moderating inuence on the cold-season

Eurasian climate.

Interdecadal Signal

The interdecadal signal of Figure 22 is established as a signi�cant signal in joint

temperature and SLP over the Northern hemisphere (Figure 32-Figure 34), with a

suggested Paci�c basin center of activity. Although a number of possible mecha-

nisms for such such roughly bidecadal timescale variability were discussed in section

4.1, the joint-mode analysis provides evidence for the particular mechanism advo-

cated in the modeling study of LB94. In that study, oscillatory � 20 year period

behavior centered in the North Paci�c was generated in a roughly 70 year simu-

lation of a coupled ocean-atmosphere model. A delayed oscillator mechanism was
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Figure 31: Spatial and temporal pattern of secondary secular mode. (top) Time

reconstructions for a reference temperature gridpoint in the North Atlantic, along

with smoothed raw data series. An additional (thick dashed) curve shows the addi-

tional contribution of the primary secular mode to the total secular variation at this

gridpoint. (bottom) Cold-season (left) and warm-season (right) spatial patterns

of signal, showing in each case the phases of the signal corresponding to a warm

(upper) and cold (lower) North Atlantic.
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argued for by LB94, involving feedbacks between gyre heat transport, changes in

heat content and SST, and anomalous atmospheric circulation in the extratropical

Paci�c. The interdecadal signal isolated in the joint �eld analysis exhibits remark-

able resemblance in both temporal (i.e., both the �20 year period and the irregular

modulated nature of the oscillation) and spatial (Fig. 33) characteristics to the

LB94 signal. During the extreme of the cycle associated with anomalous negative

oceanic heat content in the central North Paci�c in LB94, for example, LB94 observe

anomalous positive SSTs in the lower-latitude North Paci�c. This anomalous SST

pattern is associated with an an increased latitudinal SST gradient, accompanying

anomalous low wintertime SLP over the North Paci�c and inferred strengthening

of mid-latitude westerlies. At the other extreme of the cycle, these patterns are

reversed. This relationship is argued by LB94 to reect a sequence of positive and

negative feedbacks whereby changes in the meridional SST gradient force an equiv-

alent barotropic response in the planetary wave structure. This altered circulation

leads to changes in the latitudinal gradient in windstress curl, spinning down the

subtropical North Paci�c gyre, altering the poleward heat transport by the gyre and

thus, the SSTs themselves. The mode is inferred to be an internal eigenmode that

is excited by stochastic forcing.

In the cold-season (Figure 33), the peak positive (negative) SLP anomaly over the

North Paci�c is associated with a pattern over North America resembling the posi-

tive (negative) phase of the Paci�c/North American teleconnection pattern [PNA {

see Barnston and Livezey, 1986]. The \PNA" signature of this interdecadal signal

is distinct from the similar but spatially o�set \TNH" pattern typically connected

with the interannual ENSO signal (see \ENSO Signal" section below), consistent

not only with LB94, but other studies which have linked interdecadal variability

with the PNA pattern [e.g., Trenberth, 1990; Mann and Park, 1993]. The � 20

year timescale of an oscillatory cycle is attributed by LB94 to the intrinsic spinup

timescale of the North Paci�c gyre, with the adjustment in gyre heat transport

lagging windstress changes by several years, thus providing feedbacks that support

oscillatory behavior. The warm-season expression of the signal (Figure 34) em-

phasizes the seasonal persistence (and consistency) of SST anomalies in the Paci�c

which appear to lead to cold season-speci�c excitation of high-amplitude extrat-

ropical circulation anomalies. This seasonal distinction is also consistent with the

LB94 mechanism. One notable exception is an implied strengthening and weakening
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of the Asian monsoonal pattern associated with seasonally-opposite SLP variations

over central Asia.

While some compelling similarities are found with the simulations of LB94, there

are notable discrepancies as well. For example, the interdecadal pattern of LB94 is

strongest over the western North Paci�c where the model SST gradient is largest.

In contrast, our observed pattern exhibits the largest SST gradient anomalies in

the eastern North Paci�c. Furthermore, high amplitude variability in the Atlantic

region and elsewhere suggests strong downstream teleconnections or perhaps even

coupling with Atlantic basin processes. Such issues are discussed further for the

\Quasidecadal" signal below. This monsoonal pattern discussed above is just one

of several apparent connections with low-frequency variability in ENSO which are

also not explained by the extratropical mechanism of LB94, and may indicate the

added importance of coupling between the extratropics and tropics. This relation-

ship is evident not only in the ENSO-like patterns of warming and cooling (see also

section 4.1) but in the mild positive east-west SLP gradient across the tropical Pa-

ci�c coinciding with anomalous warmth in the eastern tropical/subtropical Paci�c.

Furthermore a close association between the signal and decadal-scale variations in

the southern oscillation [SO { see Fig 32 and also, Trenberth, 1990] and NINO3 SST

indices (both exhibit spectral coherences signi�cant at �95% con�dence level within

the interdecadal frequency band) is evident. Such connections suggest some rela-

tionship with low-frequency changes in ENSO. It is possible that the high-amplitude

extratropical variations may force a weaker modulation of the tropical Paci�c, thus

impacting the ENSO phenomenon. Conversely, a more complicated coupled tropical

/extratropical mechanism could be at work, perhaps combining dynamical mecha-

nisms explored by both LB94 and Gu and Philander [1997].

In terrestrial regions, the temperature patterns appear consistent with the ef-

fects of altered atmospheric circulation on sensible heat redistribution. For example,

the cold anomaly in the southeastern U.S. and warm anomaly in the Northwestern

U.S. are consistent with sensible heat transport by the anomalous PNA-type pat-

tern. This phase of the cycle is associated with a signi�cant share of the general

hemispheric (and in fact global, as shown in section 4.1) warmth that was observed

during the mid-to-late 1980s (as well as the late 1940s and early 1970s), but the sig-

nal projects a tendency for negative temperature anomalies during the early-to-mid

1990s, counter to the continued acceleration of warming which, as discussed earlier,
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Figure 32: Temporal pattern of interdecadal mode for (i) reference subtropical

east/central Paci�c temperature gridpoint and (ii) reference mid-latitude central

Paci�c SLP gridpoint (cold season) along with the smoothed raw data series. The

thick dashed line in (i) indicates the sum of the secular warming trend (see Figure

24) and interdecadal mode. The thick long-dashed line in (ii) shows the interdecadal

and longer-term (lowpassed with a notch at 10 year period) variations in the SOI

(scaled by a factor of 3 in mb) since continuous data is available, demonstrating

an in-phase relationship of decadal-scale variations with the projection of the inter-

decadal signal onto cold-season winter North Paci�c SLP. [From Mann and Park

(1996b).]
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Figure 33: Cold-season spatial pattern of interdecadal signal shown at progressive

intervals, spanning one half of a complete (� 17 year) cycle. The absolute timing

of relative phases of the pattern are de�ned by the reference temperature and slp

series shown in Figure 32. [the signal progression here and in all similar following

plots is opposite to that erroneously shown in Mann and Park (1996b).]
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in Fig 33.
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may relate to non-stationary behavior in ENSO [Trenberth and Hoar, 1995].

Quasidecadal Signal

In contrast to the interdecadal signal discussed above, the quasidecadal (10-11 year

period) signal (Figures 35,36), as its counterpart in global temperature data (Figure

23) appears to be tied more closely to the North Atlantic region. Weaker variability

is observed throughout the remaining Northern Hemisphere. The more widespread

global temperature data of section 4.1 supports a more distinct separation (i.e., a

\spectral gap" { compare Figures 18 and 28) between the quasidecadal and inter-

decadal signals than does the joint �eld analysis. With the short duration of instru-

mental data available and only a Northern Hemisphere domain, it is more di�cult

to distinguish adequately between the statistical models of independent interdecadal

and quasidecadal spatially distinct processes, and a single more broadband, coupled

basin signal.

The quasidecadal signal at certain phases exhibits an NAO-like SLP pattern

(Figure 36) consistent with observations of quasidecadal variability in the NAO index

itself [Hurrell, 1995]. However, the SLP pattern is more monopole, with a higher

amplitude center of variation in the subpolar North Atlantic than in the subtropics.

This distinction underscores the danger of analyzing simple indices such as the NAO

for inferences into low-frequency climatic variability; while the pattern of Figure

36 projects onto an NAO or other diagnostic index of North-South SLP gradients

in the North Atlantic, it does not in fact resemble the classic NAO pattern [e.g.,

Rogers, 1984; Lamb and Peppler, 1986]. The observed pattern, furthermore, is not

a associated with a standing SLP dipole, but rather a time-evolving SLP anomaly

pattern. Cold conditions over Northern Europe/Western Eurasia for example are

consistent with the inferred breakdown of maritime inuence due to anomalous low

SLP centered over Great Britain during the 3rd snapshot shown. This pattern is

almost orthogonal to an NAO anomaly pattern.

Both temperature and SLP signatures over the North Atlantic are similar to

that identi�ed by Deser and Blackmon [1993] for quasidecadal North Atlantic cli-

mate variations, but the signal appears to exhibit a wider hemisphere-scale inuence.

Mann et al [1995a] noted that the quasidecadal signal dominates the low-frequency

winter circulation variability in the Great Basin (compare Figure 36 in this region).

They were able to demonstrate an association between the anomalous low pressure
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over the region during the phase of the 3rd snapshot of Figure 36 and coincident

increased storm activity/increased regional precipitation anomalies leading to an in-

creasing trend in the Great Salt Lake volume. In contrast with the PNA circulation

anomalies associated with the interdecadal signal discussed above, which are in-

terpreted as a downstream perturbation set up by Paci�c basin climate variations,

we infer here an origin in the high-amplitude variations centered in the Atlantic.

The notion that an Atlantic source of variability would have such strong upstream

impacts is counterintuitive, but nonetheless consistent with studies that have estab-

lished the importance of retrogressing long-wave disturbances during the cold season

over North America [e.g., Lanzante, 1990].

No connection is found between the quasidecadal signal and ENSO. Spectral co-

herences with quasidecadal band variations in NINO3 and the SOI are statistically

insigni�cant. The purely cold-season nature of the signal in this analysis seems

to arise from that fact that its most prominent features { i.e., the extratropical

circulation and surface temperature anomalies in the North Atlantic { are cold-

season dominant. The signal may persist year-round in the tropics which are only

weakly represented by our largely extratropical spatial sampling. The cold-season

expression in the extratropics may also indicate a carrier signal beneath the seasonal

thermocline, only expressed at the surface during the winter period when strati�-

cation is weak and deep convection occurs [see e.g., Dickson, 1997 and references

therein].

LB94 suggest that a mechanism similar to that discussed for the interdecadal

Paci�c-centered signal, combined with a narrow basin geometry, could lead to an

analogous shorter period, quasidecadal signal centered in the Atlantic. Our study

o�ers some limited support for this hypothesis, as the relationship between the

evolving patterns of SLP and SST in the North Atlantic show some of the same

features. For example, the initial snapshot of Figure 36 exhibits a consistent pattern

of anomalous high pressure associated with inferred weakened westerlies in mid-

latitudes, and a decreased SST gradient over much of the Atlantic. However, the

mechanism of LB94 does not explain some very important features of the signal,

most notably the tropical SST dipole associated with the larger-scale expression of

the signal as shown earlier in Figure 23.

A number of mechanisms besides that of LB94, could explain such features or

even the signal itself. Some researchers indicate the importance of low-frequency
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Figure 35: Time reconstruction of �10-11 year quasidecadal signal for (i) reference

mid-latitude/sub-polar North Atlantic SLP gridpoint (cold season) and (ii) similar

latitude western Soviet temperature gridpoint. Note the 90o phase lag between the

two variations, as expected from the discussion in the text. [From Mann and Park

(1996).]
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Figure 36: Cold-season spatial pattern of quasidecadal signal spanning one half of

complete (� 11 year) cycle. The initial snapshot corresponds to the peak positive

winter SLP anomaly in the North Atlantic.
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advection of salinity anomalies by gyres [Weaver et al, 1991] or the interaction of

thermal and salinity anomalies [Yang and Neelin, 1993] on deep water production,

and tropical ocean-atmosphere interactions [Mehta and Delworth, 1994]. Chang et al

[1997] present a simple, but compelling, thermodynamic coupled ocean-atmosphere

mechanism which leads to a quasidecadal oscillating SST dipole (and corresponding

wind anomalies) in the tropical Atlantic. Tourre et al [1997] propose how the inter-

action of such tropical anomalies with other processes, such as gyre-scale advection,

can lead to a full-basin expression of signals that originate in the tropical Atlantic.

Several studies have also presented possible connections between the �11 year

solar cycle and quasidecadal climate uctuations. Such statistical relationships have

typically been established with stratospheric and upper tropospheric uctuations

[e.g., Labitzke and van Loon, 1988; Tinsley, 1988], rather than lower atmospheric or

surface climate data. While we do not �nd evidence for a statistically signi�cant

correlation with the �11 year sunspot cycle in this quasidecadal surface climate

signal, there is some evidence for phase-locking during the past few decades [see also

Mann et al, 1995b] coinciding with a period of high amplitude solar cycle variations.

The argument that an internal quasidecadal eigenmode could resonate with such

external forcing, given su�cient amplitude, cannot be ruled out. However, the direct

forcing (i.e., the irradiance changes) associated with such solar variations is small

[see e.g., Lean et al, 1995] and some as yet unestablished means of ampli�cation of

the forcing [e.g., cloud electri�cation {Tinsley, 1988 or modulation of stratospheric

ozone concentrations { Robock, 1996] would be required for a viable mechanism.

ENSO Signal

Although the region sampled in this analysis does not include the equator or south-

ern hemisphere, enough of the tropical Northern hemisphere is included that re-

lationships with ENSO can be examined. The domain includes a sizable region

known to experience the direct e�ects of both El Nino and the Southern Oscillation

or \SO" [see e.g., Trenberth and Shea, 1987]. Our analysis thus complements similar

previous analyses of ENSO-related climate variability [Barnett, 1991] where tropical

ENSO-band climate patterns were examined, by using a long, widespread, though

less tropics-dominated dataset.

The time-domain signal is reconstructed based on the evolutive procedure (em-

ploying a 40 year moving window) recognizing the distinct low-frequency \`LF" and
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Figure 37: Time reconstruction for (i) low-frequency component, reference SLP

gridpoint in the tropical western Paci�c, (ii) low-frequency component, reference

temperature gridpoint in the eastern tropical Paci�c, (iii) high-frequency compo-

nent, same SLP gridpoint, (iv) high-frequency, same temperature gridpoint, (v)

sum of interdecadal and both ENSO components, SLP gridpoint, (vi) sum of in-

terdecadal and both components + secular warming signal, temperature gridpoint.

[From Mann and Park (1996b).]
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Figure 38: Canonical cold-season spatial pattern of low-frequency ENSO signal

spanning one half of the average � 5.4 year cycle length. The initial snapshot

corresponds to peak or near-peak (El Nino/low SO) ENSO conditions in the cycle.

105



� = 0
o

t = 0

� = 45
o

t � 0:7 yr

� = 90
o

t � 1:4 yr

� = 135
o

t � 2:0 yr

� = 180
o

t � 2:7 yr

Figure 39: Canonical warm-season spatial pattern of low-frequency ENSO signal.
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high-frequency \HF" band components isolated in the evolutive spectrum (see Fig-

ure 29). The reference signal is shown for a temperature gridpoint within the reach

of the warm \El Nino"/cold \La Nina" tongue, and an SLP gridpoint within the

limits of the Indonesian convective region strongly impacted by the southern oscil-

lation (Figure 37). These two reference series are analogous to NINO3 and reverse

SOI indices, and as expected are roughly in phase. Both HF and LF time-domain

components exhibit highly signi�cant spectral coherence within their respective fre-

quency bands (95-99% con�dence level) with both the standard SOI and NINO3

indices, providing independent evidence of a direct relationship with the ENSO sig-

nal. The spatial patterns for the LF component are shown for both cold (Figure

38) and warm (Figure 39) seasons. For simplicity, we show the spatial evolution

for only one (the \low-frequency") of the two dominant ENSO-related signals, and

for a \composite" cycle obtained as the average pattern of evolution of the sig-

nal over the 95 year period. While certain features di�er between the two signal

components, we focus below only on those features that are shared by the low-

and high-frequency patterns, and persist from cycle-to-cycle over the slowly evolv-

ing patterns of reconstruction. Low frequency and secular changes in the regional

pattern of the large-scale ENSO signal may nonetheless exist [e.g., Ropelewski and

Halpert, 1987] and should not be dismissed as stochastic event-to-event variations.

Consistent with such non-stationarity in the patterns of ENSO, we note that the

relative signature of \El Nino" vs \SO" characteristics is somewhat variable over

time for the higher-frequency ENSO component, as evident in the high amplitude

temperature uctuations in the tropical eastern Paci�c early in the century contrast-

ing with relatively high-amplitude SLP uctuations in the western tropical Paci�c

later (Figure 37). The nearly constant phase relationship (i.e., zero lag) between

these SLP and temperature variations indicates a consistent \ENSO" signal. Stud-

ies of long-term proxy data suggests similar non-stationarity in the characteristics

of ENSO over several centuries [Cole et al. 1993; Linsley et al., 1994; Dunbar et al.,

1994; Bradley et al., 1994].

The initial stage shown for both the cold and warm season signal coincide with

the peak low phase of the Southern Oscillation (maximum SLP anomaly in the In-

donesian convective region, minimum SLP anomaly in the eastern Paci�c) in phase

with El Nino conditions (maximum positive SST anomalies along the eastern trop-

ical and subtropical Paci�c coast). Consistent with other studies [e.g., Horel and
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Wallace, 1981] the low phase of the Southern Oscillation is observed to accompany

notable cold-season circulation anomalies over the North Paci�c and North America.

The cold-season pattern over North America during this positive ENSO phase { e.g.,

roughly the �rst two stages shown { most closely resembles the Tropical/Northern

Hemisphere (TNH) pattern which recent studies have shown to be a characteris-

tic cold-season extratropical teleconnection of ENSO [Livezey and Mo, 1987], with

patterns resembling the NAO [e.g., Rogers, 1984] and Western Paci�c Oscillation

(WPO) somewhat evident. There is a predominant tendency for hemisphere-wide

warmth at this stage, although cooling is found in certain areas where cold advection

is suggested or, in the case of Greenland, cooling under a cold-season high pressure

region suggestive of enhanced radiational cooling. As the cycle progresses, by the

3rd stage shown (half way between low/high SO and El Nino/La Nina conditions),

the TNH pattern over North America has broken down (although a considerable

low pressure anomaly remains over the North Paci�c) and temperature anomalies

are generally weak. The cycle subsequently progresses to the reverse of the initial

phase, associated with high SO, La Nina, a reverse TNH pattern, and predominant

coolness over the hemisphere.

The SST anomaly patterns are consistent between, and quite persistent through

the warm season, but tropical and extratropical circulation anomalies (including the

east-west SLP gradients in the tropical Paci�c) are considerably weaker. Accord-

ingly, land surface temperature anomalies typically are lower amplitude . In places

(e.g., central Asia) temperature anomalies in the distinct seasons are of opposite

sign due to the seasonal speci�city of inferred circulation anomalies. The seasonal

persistence of the signal thus appears to arise largely from the year-round persis-

tence of tropical SST anomalies during the evolution of the signal, while atmospheric

circulation anomalies are more seasonally variable.

Quasibiennial Signal

The joint-mode analysis con�rms the association of the large-scale surface quasibi-

ennial signal (Figures 40, 41) with a distinct NAO SLP pattern as in Trenberth and

Shin [1984]. Hemisphere-wide teleconnections are nonetheless evident. The time-

domain signal (Figure 40 { performed using the evolutive reconstruction procedure

with a 20 year window) exhibits considerable amplitude modulation on decadal

timescales, which may indicate a coupling with other lower-frequency variability
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Figure 40: Time reconstruction of �2.1-2.2 year quasibiennial signal (all months) for

(i) reference SLP gridpoint in central subtropical North Atlantic and (ii) reference

temperature gridpoint in western Soviet Union. [From Mann and Park (1996b).]
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Figure 41: Canonical cold-season spatial pattern of quasibiennial signal, spanning

one half of the average � 2.2 year cycle length. The initial snapshot corresponds to

the peak positive NAO pattern over the North Atlantic.
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discussed earlier. This signal is also observed to be highly phase-coherent with no

phase modulation, which, as its period is not an integral multiple of the annual cy-

cle, indicates weak if any phase-locking to the annual cycle. Nonetheless, the signal

features are most distinct during the cold-season (Figure 41). The phase shown in

the initial snapshot, associated with the positive NAO pattern over the Atlantic,

also shows a \lopsided" dipole SLP pattern over the Paci�c. The temperature pat-

tern follows expected patterns of sensible heat transport with warm (cold) anomalies

associated with regions of implied southerly (northerly) advection and, over extrat-

ropical Eurasia, enhanced warmth due to strengthened westerlies and an associated

moderated winter climate. Similar relationships between circulation and surface

temperature anomalies are found as the signal evolves over a typical cycle. The

lack of large temperature anomalies in the eastern Paci�c or any sizable east-west

SLP gradients in the tropical Paci�c during the evolution of the signal would seem

to cast doubt on a direct connection with ENSO. However, we do, somewhat para-

doxically, �nd signi�cant spectral coherences between the quasibiennial signal and

quasibiennial-band uctuations in ENSO [that is, both the SOI and NINO3 { see

also Trenberth and Shin, 1984; Barnston et al., 1991]. This relationship could thus

reect a quasibiennial extratropical forcing of weaker uctuations in ENSO. This

inference is not dissimilar from that of Barnett [1991] who noted that QB-band vari-

ations, although apparently somewhat related to ENSO, had a far weaker loading in

the tropical Paci�c than lower-frequency ENSO variability. Consistent with Barnett

[1991] and Trenberth and Shin [1984], no signi�cant relationship is observed with

the quasibiennial oscillation in equatorial stratospheric wind data available for the

past few decades [see Naujokat, 1986], with spectral coherences in the quasibiennial

band that barely breach the median con�dence level for signi�cance.

Summary

MTM-SVD analysis of a joint 20-th century temperature-anomaly/sea-level pres-

sure data set, restricted to the Northern Hemisphere, lends strong support to the

existence of the oscillatory climate signals, identi�ed in the temperature-anomaly

data set alone. The interdecadal 16-18 year climate signal appears consistent with a

gyre spinup and mid-latitude ocean-atmosphere interaction, a mechanism predicted

in a recent coupled-ocean atmosphere simulation. Weaker quasidecadal (10-11 year

timescale), largely cold-season oscillatory behavior is more closely tied to the North
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Atlantic and may involve analogous mechanisms. Rather than modulating a simple

NAO pattern, the decadal oscillation is associated as well with a lateral migration

of pressure and temperature anomalies, behavior that would be missed in a simple

time series of a �xed NAO index. Interannual variability is examined with an \evo-

lutive" generalization of our procedure to captures the time-evolving frequency and

amplitude characteristics of the associated climate signal. Variability exhibiting the

characteristic climatic patterns of the global El Nino/Southern Oscillation (ENSO)

phenomenon is described by two largely distinct frequency bands within the broader

3-7 year ENSO band. The drifting central frequencies of these two dominant bands

is suggestive of non-stationary behavior in ENSO. A quasibiennial signal exhibits a

gradual trend towards increasing frequency.

4.3 Long-term Multiproxy Temperature Data

To more con�dently identify spatiotemporal climate signals at interdecadal and

longer timescales, we make use of a small (35), but globally distributed, set of high-

resolution temperature proxy reconstructions (Figure 42) available for most of past

half millennium. These data include tropical [e.g., Thompson, 1992] and extrat-

ropical ice melt measurements [Bradley and Jones, 1993], tropical corals [Cole et al,

1993; Dunbar et al, 1994] dendroclimatic reconstructions [Jacoby and D'arrigo, 1989;

Bradley and Jones, 1993] and a handful of very long historical sources [Bradley and

Jones,1993]. Although extratropical records primarily reect warm season climatic

variations [see Bradley and Jones, 1993], the signals of interest (see e.g. section 4.2,

Figure 28) are believed to be seasonally robust. The characteristics of the di�erent

proxy records employed in the network are described in Table 5.

To trade o� the limitations of temporal resolution and duration (see Table 5)

with that of spatial coverage, it was useful to analyze four subsets of the data

independently: (A) 27 shorter records (1730-1969) with annual resolution, (B) 21

medium duration (1615-1969 AD) records with annual resolution (C) 35 shorter

(1730-1960 AD) records with decadal resolution and (D) 12 longer (1400-1960 AD)

records with decadal resolution.

LFV spectra

First, we compared the proxy network against instrumental data in sampling and

detecting the same large-scale temperature signals. We performed parallel analyses
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NETWORK A

NETWORK B

NETWORK C

NETWORK D

Figure 42: Distribution of proxy temperature reconstructions used in the present

study for experiments (a), (b), (c), and (d). Squares denote historical or instru-

mental records, Umbrella or \Tree" symbols denote dendroclimatic reconstructions,

\C" symbols indicate corals, and diamond indicates varved lake sediment record.

[Reprinted with permission from Mann et al (1995b). Nature (London), 378, 266-

270. Copyright c1995 Macmillan Journals Limited.]
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Record Location Begin End Resolution Reference

1. Northern treeline (tree ring) 69N, 197E 1515 1982 annual Jacoby and D'Arrigo

2. Northern treeline (tree ring) 66N, 203E 1515 1982 annual Jacoby and D'Arrigo

3. Northern treeline (tree ring) 68N, 218E 1515 1982 annual Jacoby and D'Arrigo

4. Northern treeline (tree ring) 64N, 223E 1515 1982 annual Jacoby and D'Arrigo

5. Northern treeline (tree ring) 66N, 228E 1515 1982 annual Jacoby and D'Arrigo

6. Northern treeline (tree ring) 68N, 245E 1515 1982 annual Jacoby and D'Arrigo

7. Northern treeline (tree ring) 64N, 258E 1515 1982 annual Jacoby and D'Arrigo

8. Northern treeline (tree ring) 58N, 267E 1515 1982 annual Jacoby and D'Arrigo

9. Northern treeline (tree ring) 57N, 283E 1515 1982 annual Jacoby and D'Arrigo

10. Northern treeline (tree ring) 59N, 289E 1515 1982 annual Jacoby and D'Arrigo

11. Northern treeline (tree ring) 48N, 294E 1515 1982 annual Jacoby and D'Arrigo

12. Western U.S. (tree ring) 42N, 249E 1600 1982 annual Bradley and Jones

13. Northern Patagonia (tree ring) 38S, 292E 869 1983 annual Bradley and Jones

14. Central Patagonia (tree ring) 41S, 292E 1500 1974 annual Bradley and Jones

15. N. Scandinavia (tree ring) 68N, 23E 500 1980 annual Bradley and Jones

16. Northern Urals (tree ring) 66N, 62E 1400 1969 annual Bradley and Jones

17. Upper Kolyma River (tree ring) 68N, 155E 1550 1977 annual (Earle, pers. comm.)

18. Tasmania (tree ring) 43S, 148E 900 1989 annual Bradley and Jones

19. South New Zealand (tree ring) 44S, 170E 1730 1978 annual Bradley and Jones

20. Agassiz (ice melt) 81N, 280E 466 1966 5 yr Bradley and Jones

21. Southern Greenland (ice melt) 66N, 315E 1545 1988 annual Bradley and Jones

22. Devon (ice melt) 75N, 275E 1400 1970 5 yr Bradley and Jones

23. Svalbard (ice melt) 79N, 17E 1400 1985 annual Bradley and Jones

24. Quelccaya (ice core, O18) 14S, 289E 470 1984 annual Thompson

25. Dunde (ice core, O18) 38N, 96E 1606 1985 annual Thompson

26. Central England (instrumental) 52N, 358 E 1730 1987 annual Bradley and Jones

27. Central Europe (historical) 45N, 10E 1550 1979 annual Bradley and Jones

28. Eastern China (historical) 24N, 114E 1380 1980 decadal Bradley and Jones

29. Northern China (historical) 39N, 118E 1380 1980 decadal Bradley and Jones

30. Yellow River (historical) 35N, 116E 1470 1980 decadal Bradley and Jones

31. S.E. China (historical) 25N, 118E 1470 1980 decadal Bradley and Jones

32. Yangtze River (historical) 29N, 118E 1470 1980 decadal Bradley and Jones

33. Galapagos (coral, O18) 1S, 270E 1607 1981 annual Dunbar et al

34. Great Barrier Reef (coral) 19S, 148E 1615 1982 annual Lough (pers. comm.)

35. Minnesota (lake varve) 48N, 259E 980 1960 decadal Bradley and Jones

Table 5: Proxy Data Records Used: Description/Type of Record, Location (Lati-

tude, Longitude), Beginning and Ending Year, Time Resolution, and Reference.
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of data during the last century based on (i) the global distribution of instrumental

temperature data from 1890-1989 analyzed in section 4.1, (ii) proxy group A over

the abbreviated interval 1890-1969, and (iii) a sparse sub-sampling of the instru-

mental data of (i) chosen to mimic the spatial distribution and seasonal sampling

and 1890-1969 time interval of the proxy data set A. A paucity of high-latitude

instrumental sites impedes a perfect spatial match between data sets (ii) and (iii).

The associated LFV spectra are shown in Figure 43. All four data sets exhibit a

statistically signi�cant 16-18 year timescale interdecadal signal (f � 0:06 cyc/yr)

signi�cant at the 95% con�dence level. The quasidecadal signal of sections 4.1 and

4.2 (f � 0:09 cyc/yr) is at least marginally signi�cant (>90% level) in each of the

datasets. Though the quasidecadal signal is cold-season dominant in the extratropi-

cal Northern hemisphere (section 4.2, \Quasidecadal Signal"), the global sampling of

the proxy network probably facilitates its detection with predominantly warm season

proxy indicators. Within the secular regime, both the primary and secondary mode

are signi�cant, as in the observational temperature and joint temperature/SLP anal-

yses of sections 4.1 and 4.2 respectively. This exercise indicates that the proxy data

network appears to be capable of capturing large-scale climatic processes evident in

recent instrumental-based analyses, though with inexact calibration.

Figure 44 shows the LFV spectra applied to the full-length multiproxy datasets.

The LFV spectra for data groups A{D yield statistically signi�cant peaks on 15-

35 year interdecadal and 50-130 year multidecadal/century timescales. We isolate

a quarter-millennial (�240 year) oscillation in data group D where longer-period

variability can be resolved from a secular trend. This identi�cation is tentative,

however, as less than three \cycles" are present, and the signal can not be indepen-

dently con�rmed from the other data subsets. Only groups A and B can fully resolve

the bidecadal signals, as the Nyquist frequency for 10-year sampling corresponds to

a 20-year period. Higher frequency signals (e.g., ENSO band) observed in the A and

B analyses are discussed elsewhere Bradley et al [1994]. Comparison of the spatial

patterns of the interdecadal and century-scale peaks reveal clear distinctions that

are consistent among the data groups. We have grouped peaks of correlated vari-

ance into interdecadal and century-scale bands. The variation of these peaks among

LFV spectra on di�erent time intervals suggests signals with frequencies that drift

over time.

The time-evolving nature of the amplitude and frequency of the interdecadal
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Figure 43: LFV spectrum for (i) instrumental global temperature data of section

4.1 (ii) proxy data set (A), (iii) instrumental data sampled similarly to the proxy

network, as described in the text. The local fractional variance scale shown applies

strictly only to (i), with the scales for (ii) and (iii) normalized ( by factors 0.95

and 0.85 respectively) so that the quantiles of the null distribution and signi�cance

levels (which vary with the number of e�ective spatial degrees of freedom) approxi-

mately align at the 95% level (shown by horizontal dashed lines). Con�dence limits

are higher within the secular band corresponding to variability longer than about

50 years period. [Reprinted with permission from Mann et al (1995b). Nature

(London), 378, 266-270. Copyright c1995 Macmillan Journals Limited.]
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Figure 44: LFV spectra for each of the experiments \A-D". Horizontal dashed

lines indicate 90%,95%, and 99% con�dence levels for signi�cance. Signi�cant in-

terdecadal and century-scale peaks are indicated by surrounding boxes. [Reprinted

with permission from Mann et al (1995b). Nature (London), 378, 266-270. Copy-

right c1995 Macmillan Journals Limited.]
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and century-scale signals is better examined with the evolutive MTM-SVD analy-

sis. Window durations are chosen to be long enough to allow reasonable frequency

resolution, but short enough to provide insight into the evolving character of signals.

The short duration, combined with decadal resolution, precludes a meaningful evo-

lutive analysis for data group \C". The evolutive analyses (Figure 45) demonstrate

that interdecadal oscillations, centered near 20-25 year periodicity, were weakly evi-

dent before 1800. The oscillations subsequently strengthen in signi�cance and grad-

ually increase in frequency to roughly 16-18 year periodicity in the �nal window

(1869-1969), in agreement with the timescale of the interdecadal oscillation de-

scribed in sections 4.1 and 4.2. Time windows that resolve century-scale variations

(200 year width) can be employed in Experiment D. Before 1650, a coherent signal

with roughly 50 year timescale appears intermittently. After 1650 this oscillation

strengthens in its signi�cance and drifts to a 60-70 year periodicity. After 1800,

these \century-scale" oscillations appear to drift to slightly longer period, becoming

indistinguishable from secular timescale variability within the con�nes of a 200 year

moving window. Note also that the improved frequency resolution of experiment D

allows for a clearer separation of the interdecadal and century-scale variability than

do experiments A or B.

Signal Reconstructions

Figure 46 shows the spatial patterns of the interdecadal and century-scale signals.

In the spatial reconstructions, sources of systematic bias in the temperature recon-

structions may lead to unreliable phase and amplitude at isolated sites. The few

records that were not originally calibrated in temperature (oC) units, are calibrated

using the variances of nearby instrumental gridpoint temperature data [Bri�a and

Jones, 1992] during the past century. Calibration of proxy data at longer periods,

and various corrections that are made to proxy records (e.g., subtraction of indi-

vidual long-term growth trends for dendroclimatic records) are potential sources of

bias. Thus, the general regional trends that are evident in these patterns, rather

than the precise response at particular sites, are most meaningful.

The interdecadal signal (Figure 46, top) exhibits variability in the tropics and

subtropics that is largely in-phase. Mid-latitude variations are of similar magni-

tude, but phase relationships are more variable, consistent with the signature of

extratropical teleconnection patterns. While such patterns can be resolved by our
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Figure 45: Evolutive LFV spectra for (top) experiment \A" using a window L =100

(local fractional variance is described by a colour scale, with signi�cance levels

90%=0.55, 95%=0.565, 99%=0.60. Greyscale convention chosen so that any fea-

tures clearly visible above the background are signi�cant well above the 95% level.),

(middle) LFV spectrum for experiment B using a 100 year moving window (the

signi�cance levels are the same as experiment A), and (bottom) experiment D us-

ing a 200 year moving window. Signi�cance levels correspond to 0.58 (90%), 0.60

(95%) and 0.64 (99%) in the latter case. [Reprinted with permission from Mann et

al (1995b). Nature (London), 378, 266-270. Copyright c1995 Macmillan Journals

Limited.]
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Figure 46: (top) Spatial pattern of interdecadal oscillation based on the signal re-

construction for the � 24 year period peak in experiment \C" (which provides the

greatest spatial coverage). Conventions similar to that introduced in Figure 22. If

we de�ne zero phase as when the tropics are generally warmest, peak warmth in

northern Eurasia occurs 90o (or, roughly 6 years) later. Amplitude scale is set so

that the largest arrow corresponds to the regional maximum amplitude of the os-

cillation of �0.6oC peak-to-peak. (bottom) The spatial pattern for century-scale

signal oscillation is reconstructed based on the 65 year period variance peak of

experiment C. Pattern maximum is a �2oC peak-to-peak oscillation (e.g., central

Europe). [Reprinted with permission from Mann et al (1995b). Nature (London),

378, 266-270. Copyright c1995 Macmillan Journals Limited.]120



data network only in part, the alternating pattern of phase from Greenland, to east-

ern and then western mid-latitude North America (with a nodal point in central

North America) is consistent with the alternating warm and cold advection of the

three-lobed \Paci�c North American" (PNA) pressure anomaly pattern (although

the vector directions for certain sites are inconsistent with the general pattern).

This PNA pattern was associated with the interdecadal signal in the instrumental

climate record. Other regional proxy records [Slowey and Crowley, 1995] and anal-

yses of continental U.S. drought reconstructions [Rajagopalan et al, 1996] con�rm a

similar pattern of interdecadal variability in the PNA pattern. While some regional

di�erences in relative amplitude and phase are noted with the instrumental signal

(compare Figure 24), the larger-scale features of nearly in-phase tropical/subtropical

variability consistent with ENSO and an extratropical PNA-like pattern are clearly

evident in the proxy climate signal. The frequency modulation of the interdecadal

signal between �15 and �35 year period ranges (with a recent trend towards the

higher frequencies) presents a complication for the interpretation of the extratrop-

ical coupled mode of LB94 discussed in section 4.2 (\Interdecadal Signal"). The

oscillatory timescale in the LB94 mechanism is speci�ed by gyre spinup dynamics

and should not change over time. Nor should the interdecadal mechanism of Gu

and Philander [1997] which involves transit times of water mass subduction. In con-

trast, frequency modulation is more consistent with the behavior of a system with

changing control parameters, or a non-linear system [e.g., Lorenz, 1990; Tziperman

et al, 1994; Jin et al, 1994]. The latter connection would favor the notion that the

observed interdecadal variability is associated with intrinsic low-frequency behavior

of the tropical ocean-atmosphere [e.g. Graham, 1994]. Thus, while the interpreta-

tion of the underlying dynamics is not obvious, the proxy data analysis does provide

evidence for long-term interdecadal oscillations, and at least some suggestion of a

connection with ENSO.

The spatial pattern of the \century-scale" 50-70 year timescale signal (Figure 46-

bottom) exhibits high-amplitude variability largely con�ned to the North Atlantic

and Arctic, out-of-phase with weaker variability in the Paci�c basin. These features

recall the pattern of the single multidecadal or century-scale \oscillation" described

in sections 4.1 and 4.2., although it should be noted that arbitrary phase relation-

ships could not be determined for the century-scale signal in the instrumental record

as was con�ned to the secular trend frequency band. The longer history provided by
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the proxy data, however, allows for the recognition of a true oscillatory process on

multidecadal or century timescales, with arbitrary spatial phase relationships. Aside

from the Svalbard site in the boreal Atlantic, there is a tendency towards oppos-

ing, though not opposite, phase anomalies (ie., �45o-135o phase di�erence) between

the eastern and western margins of the North Atlantic (note that such variable

phase relationships could not be captured in the short instrumental record because

the multidecadal oscillation was con�ned to the secular frequency regime). Such a

phase pattern could indicate a combination of in-phase and out-of-phase components

in the two regions. An out-of-phase component could arise from di�erential tem-

perature advection on either side of an alternating center of low and high pressure

over the North Atlantic. Changes in northward oceanic heat transport would gen-

erate an in-phase component of basinwide warming and cooling. The combination

of these e�ects is consistent with the coupled ocean-atmosphere model mechanisms

isolated by DEL93 and discussed previously in section 4.2, in which multidecadal

(with a slightly shorter 40-60 year periodicity) variations in sea-level pressure over

the North Atlantic coincide with oscillations in the thermohaline circulation. The

two patterns di�er somewhat however in that the empirical phase lag between the

in-phase and out-of-phase variations across the North Atlantic suggest a temporal

lag between maxima in meridional overturning heat transport to high-latitudes and

the most pronounced atmospheric circulation response. The simulations of DEL93

show these two responses to be more coincident. Similar empirical analyses with

expanded proxy networks may better constrain the spatial relationships between the

modeled and observed oscillatory signals.

Summary

MTM-SVD analysis of a globally-distributed set of temperature proxy records, of

several centuries duration, strengthens evidence for persistent 15-35 year period \in-

terdecadal" and 50-150 year \century-scale" climatic oscillations, and reveals both

the spatial patterns and temporal histories of these signals. The time-evolving am-

plitude and frequency of quasiperiodic signals can be examined with an \evolutive"

analysis, in which the SVD analysis is applied in a moving window through the

data series. The interdecadal oscillation, centered near 20{25 year periodicity, is

weakly evident before 1800, and subsequently strengthens in signi�cance and drifts

to roughly 16{18 year period in 20th century. The century-scale mode exhibits high-
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amplitude variability largely con�ned to the North Atlantic and Arctic, out-of-phase

with weaker variability in the Paci�c basin. This behavior resembles the pattern of

the single quasi-secular \oscillation" detected in gridded surface temperature and

pressure data of the last 100 years.

4.4 Seasonal Cycle: Observations vs CO2-forced Model Sim-

ulations

Thomson [1995] showed that shifts in the phase of the annual cycle in temperature

during the 20th century are correlated with atmospheric CO2 concentrations, and

argued for an anthropogenic cause. Similar phase changes have been observed in the

seasonal cycle of temperature in particular regions [Davis, 1972; Thompson, 1995]

as well as shifts in the seasonality of precipitation [Bradley, 1976; Rajagopalan and

Lall, 1995], streamow [Lins and Michaels, 1994; Dettinger and Cayan, 1995], and

Southern Hemisphere winds and sea-level pressure [Hurrell and Van Loon, 1994]. Po-

tential physical connections with greenhouse forcing have been suggested [Lins and

Michaels, 1994], complementing the statistical correlation found by Thomson [1995].

If observed changes in seasonality are consistent with an enhanced greenhouse e�ect,

the observed trends in the seasonal cycle should resemble the simulated response

of present-generation climate models to enhanced greenhouse conditions. Here, we

review the comparison by Mann et al [1996a] of the seasonal cycle of temperature

in the northern hemisphere with those of simulations of 1) the Geophysical Fluid

Dynamics Lab (GFDL) coupled ocean-atmosphere model [Manabe et al, 1991], and

2) the NCAR Community Climate Model (CCM1) general circulation/slab ocean

model [Oglesby and Saltzman, 1992].

Northern hemisphere average trends

We approximate the seasonal cycle in temperature by its fundamental annual com-

ponent A(t) cos(2�t+�(t)), where t is time in years and the phase �(t) and amplitude

A(t) can vary with time. This simple statistical model is motivated by the fact that

surface temperature seasonality is determined, within a phase lag, by the yearly

cycle of insolation at the top of the atmosphere in most locations. The harmonics

of the annual cycle are important, however, in the tropics and in the polar lati-

tudes of the southern hemisphere [see e.g., Trenberth, 1983] and provide essential

information about relationships with speci�c seasons (e.g., the onset of \spring"
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[Davis, 1972]). The departures of certain seasonal features (e.g., convective mixing

in the high-latitude ocean, the termination of the monsoons, or sea ice and snow-

cover processes) from a simple annual cycle suggest that our analysis provides only

a �rst-order estimate of more general changes in the structure of the seasonal cycle.

Using the estimated Northern Hemisphere (NH) average monthly temperature

series of Jones et al [\J&W", 1986 { updated in Jones, 1994] with seasonal clima-

tology intact, we estimated the variation in �(t) and A(t) of the annual cycle over

the interval 1854-1990 through complex demodulation (Figure 47).

We used three Slepian data tapers and a 10 year moving interval or \projection

�lter" to obtain low-variance estimates of the trends in A(t) and �(t). Through

this method, phase shifts of less than one day can be resolved in monthly data

[see Thomson, 1995]. The calculated trends were robust as we varied the length

of the moving window from 5 to 20 years. The highly variable spatial sampling

(growing from � 20% to near-complete areal coverage during the interval under

examination) may bias estimates of small changes in hemisphere-averaged quantities.

To test for such bias, we analyzed alternative \frozen grid" estimates of the NH

average series using gridded land air and sea surface temperature data [Jones and

Bri�a, 1992]. These series were calculated from both 1) a \sparse" sampling of all

nearly-continuous gridpoint series from 1890 to 1989 [see e.g., Mann and Park, 1994]

providing 33% coverage, and 2) a \dense" sampling from 1899 to 1989 providing 53%

areal coverage (shown in Figure 48). The gross trends in the annual cycle phase and

amplitude (Figure 47) appear insensitive to the sampling of large-scale averages (see

Table 6), though an unavoidable bias due to data sparseness at latitudes poleward of

70�N may exist. The baseline annual cycle varies with the mixture of land, ocean,

and high-latitude grid points due to important regional variations in phase and

amplitude.

Trends towards an advanced phase (i.e., earlier seasonal transitions) are sig-

ni�cant at better than 2.5� in each of the three data schemes (Table 6) based on

jackknife uncertainties, taking serial correlation into account. Such signi�cance does

not alone indicate a causal connection with greenhouse-related warming, as it could

result, for example, from the enhanced century-scale natural variability that is ev-

ident in both observations [Mann and Park, 1994; Schlesinger and Ramankutty,

1994; Mann et al 1995b] and modeling studies [Delworth et al, 1994]. If an opposing

trend towards delayed phase due to orbital precession is adopted as a null hypothesis
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Figure 47: (a) Phase of annual cycle in Northern Hemisphere average temperature

for observations and model simulations. Best-�t linear trends (Table 6) are shown.

For the observational data, results for both the \J&W" expanding grid, and sparse

and dense \frozen-grid" estimates (see text) are indicated. For the longer J&W

series, a break in slope near 1900, marks a transition from decreasing to increasing

phase (latter portion shown with thicker curve). Time axis for the model de�ned

by the actual year corresponding to the initial prescribed CO2 level. For the CCM1

(equilibrium) experiment, only the net change has meaning. For graphical purposes,

a timescale is prescribed by assuming the same 1 %/year increase as in the GFDL

experiment. (b) Amplitude of the annual cycle. Decreasing trends of varying mag-

nitude are found for both model and observed data. Best-�t linear trends are shown

(Table 6), with a break in slope again evident in the observations between 1890 and

1900. [From Mann and Park (1996a).]
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Table 6: Linear Trends in Phase and Amplitude of Northern Hemisphere Average

Annual Temperature Cycle for Model and Observations. [From Mann and Park

(1996a).]

SERIES ��(o) signif. �A signif.

OBSERV (J&W: 1854-1904) -1.4 > 5:5� -0.55 > 6�

OBSERV (J&W: 1899-1989) 0.79 > 4:5� -0.13 > 4�

OBSERV (SPARSE) 0.71 > 3� -0.12 > 3�

OBSERV (DENSE) 0.83 > 3:5� -0.10 > 2:5�

GFDL (CO2 increase) -1.7 > 7:5� -0.48 > 16�

" (20-70o) -1.2 > 4� -0.50 > 10�

" (20-50o) -0.2 < � -0.04 < �

GFDL (control) 0.5 > 1:5� +0.02 < �

CCM1 (460ppm-330ppm) -5.6 -1.05

[Thomson, 1995], the above trends become more signi�cant.

A signi�cant decreasing trend in A(t) is also found for each data-weighting

scheme (Figure 47, bottom). A break in the slope between 1884 and 1895 is signif-

icant at the p = 0:01 level. Lean et al [1995] suggest an increasing trend in solar

irradiance beginning in the early 20th century. This trend could counteract an even

greater decrease in A(t) that might arise from global warming and associated ice

albedo feedback, potentially explaining the break in slope. A connection between

decreasing A(t) and decreased winter ice cover is suggested by the model responses

to greenhouse forcing.

We analyzed for comparison both (i) the change in the CCM1 climatological

annual cycle between 330 ppm and 460 ppm CO2 level equilibrations [see Oglesby

and Saltzman, 1992; Marshall et al, 1995] and (ii) 100-year simulations of the GFDL

coupled model [e.g., Manabe et al, 1991] with (a) a gradual (1%/year) CO2 increase

and (b) with �xed present-day CO2. Both models exhibit a signi�cant annual cycle

response to greenhouse forcing (Table 6). Decreased amplitude of the annual cycle

under CO2-enhanced conditions is consistent with the observations. The time axis

for the transient GFDL model simulations should be interpreted quite loosely, as the

imposed forcing in these simulations is highly idealized, and does not realistically

mimic changes in observed greenhouse gas concentrations. The trend in phase for

the models, however, is opposite to that observed, exhibiting a delay, rather than

an advance, of the seasons. The magnitude and signi�cance of the trends in the
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enhanced-greenhouse GFDL simulation diminishes if high and low-latitude regions,

poorly sampled by the observational data, are excluded (Figure 47, top), but no

latitude band exhibits the phase advance found in the the observations. The control

GFDL simulation, like the observations, exhibits a marginally signi�cant advance

in phase (Table 6), perhaps associated with organized century-scale variability [Del-

worth et al, 1994].

Spatial patterns

To reconstruct the spatial patterns of the climatological annual cycle, we used a mul-

tivariate generalization [Mann and Park, 1994; Mann et al, 1995ab] of the complex

demodulation procedure used by Thomson [1995]. The climatological seasonal cycle

in the control GFDL simulation resembles quite closely that for the \dense" obser-

vational temperature sampling (Figure 49). It should, however, be noted that this

is partly due to seasonally-speci�c ux corrections that are imposed in the model

on at the ocean surface [Manabe et al, 1991]. These climatological ux corrections,

furthermore, may suppress the tendency for the annual cycle in the model to depart

from its baseline state. The annual cycle over continents is delayed by � 1 month

relative to the insolation cycle, due to the thermal capacity of land, continental

snow cover, and other climatic factors { see Trenberth [1983] for an overview. The

greater thermal capacity of the oceans leads to a greater delay (typically, 2 months)

and a smaller annual cycle amplitude. Land areas strongly inuenced by the oceans

experience a more maritime annual cycle. Winter sea ice insulates the ocean surface

from the mixed layer, exposing some oceanic regions to cold continental outbreaks.

This can lead to a more \continental" seasonal cycle in the high-latitude oceans.

Changes in the annual cycle could thus arise from many inuences. The climato-

logical annual cycle of the CCM1 (not shown) reproduces the observations less well.

CCM1 predicts an oceanic phase lag that is typically � 1 month too large because

the slab ocean is a poor approximation to the true mixed layer.

To determine the spatial pattern of annual cycle trends in the GFDL simulations,

we used the multivariate procedure described above to isolate the average annual

cycle in successive 10-year intervals. We regressed the long-term trends in �(t)

and A(t) on a gridpoint-by-gridpoint basis, calculating jackknife uncertainties from

the decadal averages. The spatial pattern of the CCM1 response (not shown) was

estimated by di�erencing the 460 ppm and 330 ppm equilibrium climatologies.
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Figure 48: Phase and amplitude of the \baseline" annual cycle in temperature for

(a) observation and (b) control GFDL simulation. A phase of 0� (rightward pointing

arrow) indicates a minimum temperature that coincides with minimum insolation

(Dec. 22nd) in the Northern Hemisphere. A 30� counter-clockwise rotation indicates

a 1-month phase delay of minimum temperature relative to the insolation minimum.

[From Mann and Park (1996a).]
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Figure 49: The linear trend of the annual cycle for the enhanced-greenhouse GFDL

simulation (a) phase and (b) amplitude. Size of arrows scales the average ampli-

tude of the annual cycle, while the direction indicates relative delay or advance

of the annual cycle. A rightward arrow indicates no change in phase. Clockwise

and counter-clockwise rotation indicates phase advances and delays, respectively.

Signi�cance of trends is indicated in terms of the ratio of the phase shift to its

jackknife uncertainty estimate. Boldface symbols/darkest shading indicate nonzero

phase and amplitude shifts at the 2-� level, thin black symbols/medium shading

indicate nonzero shifts at the 1-� l, and gray symbols/no shading indicate shifts

within 1-� of zero. [From Mann and Park (1996a).]

129



The dominant response in both the CCM1 and GFDL models to increased CO2

is one of substantial phase delays and amplitude decreases in high latitude oceanic

regions. We interpret phase trend as arising from decreased winter sea ice cover and

greater exposure of the surface to the ocean's mixed layer and its delayed thermal

cycle. The amplitude trend is consistent with a strong positive ice-albedo feedback

from reduced winter ice-cover. The close similarity of the primary response in these

two very di�erent model experiments suggests a consistent dynamical mechanism.

Nonetheless, a more spatially-complex trend pattern in the GFDL coupled model

(Figure 49) suggests other potential regional e�ects. Marginally signi�cant phase

advances, for example, are found in south central and eastern Asia. In the western

U.S. the phase advance and amplitude increase suggests decreased maritime inu-

ence. The signi�cance of these features, however, is comparable to those observed

in the control experiment, suggesting that they may be associated with the model's

natural century-scale variability rather than with a greenhouse response, or perhaps

with some combination of these e�ects.

Observed amplitude trends (Figure 50) are �2:4�C < �A < +1:0�C. Phase

advances and delays of 3�{7� (i.e. 3 to 7 days) are common. The largest �A is

along the western margins of Greenland, where signi�cant winter warming has oc-

curred during the last century [ Jones and Bri�a, 1992]. Here, we also �nd the

most signi�cant trend towards a delayed (�8 days) annual cycle in the northern

hemisphere consistent with the model-simulated signature of greenhouse-related de-

creases in high-latitude sea ice. In contrast, the phase of the annual cycle has

advanced along the eastern margins of Greenland, where a long-term winter cooling

trend is observed [Jones and Bri�a, 1992]. This cooling appears to be associated

with organized century-scale variability in the North Atlantic [see Mann and Park,

1994; Schlesinger and Ramankutty, 1994; Mann et al, 1995b] which could explain

why the signature of greenhouse forcing is masked in this region. The annual cycle

amplitude decreases in this location because winter cooling is o�set by even greater

summer cooling. A broad region of signi�cant trends in annual cycle phase and

amplitude is found in the extreme southwestern U.S. and o�shore in the subtropical

Paci�c. This may be related to secular changes in the El Nino/Southern Oscilla-

tion (ENSO) and associated changes in patterns of summer coastal upwelling [e.g.

Trenberth and Hurrell, 1994; Graham, 1995].

A combination of phase advances and amplitude decreases over mid-latitude
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Figure 50: The linear trend in (a) phase and (b) amplitude of the annual cycle for

the \dense" observational network of gridded land air and sea surface temperature

data from 1899-1990 discussed in the text. Signi�cance of trends indicated as in

Figure 49. [From Mann and Park (1996a).]
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continental interiors is consistent with an earlier snowmelt and runo� [Lins and

Michaels, 1994; Dettinger and Cayan, 1995; Groisman et al, 1994] that may be

related to greenhouse warming [Lins and Michaels, 1994; Groisman et al, 1994].

Few other locations in the Northern Hemisphere exhibit a consistent, readily inter-

pretable annual cycle response. The constructive addition of trends in continental-

interior regions is primarily responsible for the average �1 day phase advance for

the Northern Hemisphere.

Discussion and Summary

Both observations and model responses to greenhouse forcing show a trend towards

decreased amplitude of the seasonal cycle in NH-average temperatures. The simula-

tions suggest that these amplitude decreases may result from ice-albedo feedback. It

is here, however, that the agreement ends; the observed and model-predicted trends

in the phase of the seasonal cycle show little similarity.

If, as the models simulate, the dominant inuence on annual-cycle amplitudeA(t)

and phase �(t) stems from high-latitude sea-ice decreases, the signature of green-

house warming is scarcely evident in the observational data, which lack widespread

high-latitude sampling. The trend in Western Greenland, the highest-latitude re-

gion in the observations, does nonetheless resemble model simulations. Some of

these discrepancies could be due to the inuence of sulfate aerosols which may have

masked the e�ects of enhanced greenhouse gases in certain regions [see e.g., IPCC,

1996{chapter 8] and are not included as forcings in the simulations analyzed here. It

should be noted however that the physical mechanisms are not yet well understood

[Hansen et al, 1997]. It is possible that observed trends in phase, largely inuenced

by mid-latitude continental interiors, do not arise from greenhouse warming, but

rather, at least in part, from natural variability. Such a notion is reinforced by the

fact that marginally-signi�cant trends are found in the control GFDL annual cycle,

presumably due to organized century-scale internal variability.

If, on the other hand, the observed variation in the seasonal cycle truly repre-

sents a \�ngerprint" of greenhouse warming, the GFDL and CCM1 models do not

appear capable of capturing the detailed responses of the seasonal cycle to green-

house forcing. In particular, if the phase advances that result from the behavior in

continental interiors are not only statistically (as Thomson [1995] suggests), but in

fact, causally related to greenhouse forcing, the predicted behavior of the models
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in these regions would appear to be awed. De�ciencies in certain aspects of the

models (e.g., land surface parameterizations) could plausibly be at fault in such a

scenario. The absence of an ENSO of realistic amplitude is also a potential short-

coming of model-predicted changes in seasonality, as some of the observed trends

appear to show connections with ENSO.

It is possible, probably likely, that the observed trends in the seasonal cycle rep-

resent a combination of internal variability, enhanced greenhouse e�ects and external

forcings. Various alternative scenarios are di�cult to resolve, owing to limitations

in the observational data and potential shortcomings in the models' descriptions of

certain climate processes. The latter limitation may largely be overcome in newer

generation climate models. Discrepancies between the observed and model-predicted

trends must be resolved before a compelling connection can be drawn between 20th

century changes in the behavior of the annual cycle in temperature, and anthro-

pogenic forcing of the climate.

5. Conclusion

We have shown that traditional signal detection techniques su�er a number of weak-

nesses or limitations in the detection and reconstruction of irregular spatiotemporal

oscillatory signals immersed in coloured noise. A methodology for signal detection

and reconstruction of such signals { the MTM-SVD methodology { is o�ered as an

alternative technique which avoids most of these problems, and provides an e�cient

exploratory method for climate signal detection. The associated signal detection

parameter { the LFV spectrum { yields the correct null distribution for a very

general class of spatiotemporal climate noise processes, and the correct inferences

when signals are present. The methodology allows for a faithful reconstruction of

the arbitrary spatiotemporal patterns of narrowband signals immersed in spatially-

correlated noise. Furthermore, the results of the MTM-SVD approach are robust

to the temporal and spatial sampling inhomogeneities that are common in actual

climate data.

Applied to observational climate data, the MTM-SVD analysis yields insight

into secular trends, low-frequency and high-frequency quasi-oscillatory variations in

the climate system. The dominant mode of secular variation during the last century

is a long-term global warming trend associated with some anomalous atmospheric
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circulation patterns that show similarity to the modeled response of the climate to

increased greenhouse gases. Nonetheless, a substantial �70 year \century-scale"

or \multidecadal" secular variation suggestive of longer-term oscillatory behavior

is superimposed on this trend in both the global temperature and joint northern

hemisphere temperature/SLP �elds, exhibiting substantial SLP and temperature

variations in the North Atlantic, and displaying a notable high-latitude signature

in the temperature �eld. The analysis of multiple centuries of proxy data suggests

that 50-100 year internal oscillations with similar features persist over several cen-

turies. Similar oscillatory signals were attributed to variability in the thermohaline

circulation and possible coupled ocean-atmosphere processes in recent model sim-

ulation studies. An analysis of the seasonal cycle in surface temperature in the

observations and long coupled model integrations suggests the impact of both an-

thropogenic forcing and multidecadal oscillatory variations on seasonality in surface

temperature.

An interdecadal 16-18 year climate signal is clearly evident in the instrumental

climatic �elds analyzed, and appears at some level to be consistent with a mechanism

involving gyre spinup and mid-latitude ocean-atmosphere interaction which has also

been predicted in a recent coupled-ocean atmosphere simulation. A connection with

decadal-scale ENSO variability, suggested both by correlations with standard ENSO

indices and ENSO-like teleconnections in temperature and atmospheric circulation,

suggest a complexity to the signal which has not been well explained. Analysis

of long-term proxy data demonstrates evidence for the persistent, if intermittent,

nature of this cycle over many centuries. The frequency modulation of the inter-

decadal signal evident in these longer-term data seems complicate the interpretation

in terms of any simple linear dynamical mechanism. Weaker quasidecadal oscilla-

tions are evident, but with statistical con�dence. Our analyses also substantiates the

importance of oscillatory behavior on interannual timescales associated with ENSO

and quasibiennial oscillations, and provides insight into the long -term changes in

such relatively high frequency climatic processes.
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