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Abstract

Two widely used statistical approaches to reconstructing past climate histories from climate 'proxy' data

such as tree-rings, corals, and ice cores, are investigated using synthetic 'pseudoproxy' data derived from a

simulation of forced climate changes over the past 1200 years. Our experiments suggest that both

statistical approaches should yield reliable reconstructions of the true climate history within estimated

uncertainties, given estimates of the signal and noise attributes of actual proxy data networks.

1. Introduction

Two distinct types of methods have primarily been used to reconstruct past large-scale climate

histories from proxy data. One group, so-called Climate Field Reconstruction  ('CFR') methods,

assimilate proxy records into a reconstruction of the underlying patterns of past climate change

(e.g. Fritts et al., 1971; Cook et al., 1994; Mann et al., 1998--henceforth 'MBH98'; Evans et al.,

2002; Luterbacher et al., 2002; Rutherford et al., 2005; Zhang et al., 2004). The other group,

simple so-called 'composite-plus-scale' (CPS) methods (Bradley and Jones, 1993; Jones et al.,

1998; Crowley and Lowery, 2000; Briffa et al., 2001; Esper et al., 2002; Mann and Jones, 2003--

henceforth 'MJ03'; Crowley et al., 2003), composite a number of proxy series and  scale the

resulting composite against a target (e.g. Northern Hemisphere temperature) instrumental series.

CFR methods offer the advantage of estimating spatial patterns, while CPS methods involve a

simpler statistical procedure.

It is difficult to compare the performance of alternative approaches to proxy-based climate

reconstruction because no adequate ‘ground truth’ is available for evaluating the fidelity of long-

term reconstructions. Climate model simulations can, however, be used to provide a simulated

ground truth, resting on physically-based first principles, which can be exploited for the testing

of competing methods. With a climate model simulation, we can sample the field of interest (e.g.
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the surface temperature field) at selected locations (i.e., model gridboxes), to produce a set of

regional climate time series. Proxy data, however, contain considerable noise due both to the

imperfect nature of the proxy data themselves, and the inherent climate noise that exists at the

local spatial scales represented by actual proxy sites. We thus add a noise component, of

appropriate amplitude, to represent the real-world uncertainties that exist in the relationship

between proxies and regional climate. The resulting synthetic proxies or 'pseudoproxies' then

represent imperfect local climate indicators that possess similar properties to actual proxy data.

We can then apply different climate reconstruction methods to 'pseudoproxy' networks that are

constructed to have properties similar to those that have been used in past studies to produce

hypothetical reconstructions. Observing how well the actual climate model results can be

recovered from the reconstruction over an independent ('verification') period provides us then

with an objective assessment of the reliability of the method, given the assumed properties of the

pseudoproxy data. Surprisingly, these types of exercises have not previously been applied to

assess the performance of CPS methods. They have been used, however, to investigate the

fidelity of CFR methods (Mann and Rutherford, 2002; Rutherford et al., 2003; Zorita et al.,

2003; Von Storch et al., 2004).

The conclusions of such exercises are only meaningful if the climate model results are

reasonably realistic. Most previous studies employing these tests suggest that that CFR methods

are likely to produce faithful estimates of long-term trends given the statistical attributes inferred

for actual proxy data and the history of climate forcing estimated over past centuries (e.g.

Crowley, 2000). One study by Von Storch et al. (2004--henceforth 'VS04'), however, concludes

that a substantial bias may arise in proxy-based estimates of long-term temperature changes

using CFR methods. VS04 based this conclusion on experiments using a simulation of the GKSS

coupled model (similar experiments described by VS04 using an alternative simulation of the
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HadCM3 coupled model showed little such bias).  The GKSS simulation was forced with

unusually large changes in natural radiative forcing in past centuries [the peak-to-peak solar

forcing changes on centennial timescales (~1 W/m2) were about twice that used in other studies

(e.g. Crowley, 2000) and much larger than the most recent estimates (~0.15 W/m2--see Lean et

al., 2002; Foukal et al., 2004)]. A substantial component of the low-frequency variability in the

GKSS simulation, furthermore, appears to have been a 'spin-up' artifact: the simulation was

initialized from a very warm 20th century state at AD 1000, prior to the application of pre-

anthropogenic radiative forcing, leading to a long-term drift in mean temperature (Goosse et al.,

2005). CFR methods are known to perform poorly in capturing patterns of variability that are

entirely or largely missing during the calibration period (Rutherford et al., 2003).  The long-term

model drift in the GKSS simulation contributes an unphysical pattern of variance in early

centuries that is likely almost entirely absent from the later 20th century calibration period used

by VS04.  The large changes in solar forcing assumed by VS04 also occur largely before the

20th century. These arguably unrealistic features in the GKSS simulation make the simulation

potentially inappropriate for use in testing climate reconstruction methods.

We investigate here both the CFR and CPS approaches, using networks of synthetic

'pseudoproxy' data (see Mann and Rutherford, 2002) constructed to have attributes similar to

actual proxy networks used in past CFR and CPS studies, respectively. The pseudoproxy data are

derived from a simulation of the climate of the past millennium (AD 850-1999) using the NCAR

CSM  ("Climate System Model") 1.4 coupled ocean-atmosphere model (Ammann et al., 2005a),

which we believe to be appropriately realistic for use in testing climate reconstruction methods.

The model has a climate sensitivity of 2oC/2xCO2, somewhat lower than that for the GKSS

model (3.2oC/2xCO2).  Unlike VS04, however, the model has been forced with estimated natural

(volcanic+solar) and anthropogenic radiative forcing estimates that are within conventionally
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accepted ranges, though perhaps slightly higher than used in most other simulations (see Jones

and Mann, 2004). The surface temperature field has, moreover, been corrected for the small

long-term drift present (Ammann et al., 2005a).  This simulation is characterized by forced

Northern Hemisphere (NH) annual mean temperature variations in past centuries that are

modestly greater in amplitude than most other simulations (Jones and Mann, 2004), ensuring that

the simulation represents an appropriately challenging, but fair, test bed for investigating the

fidelity of statistical climate reconstruction approaches. The actual and reconstructed NH series,

temperature pseudoproxy and gridbox series for both CPS and CFR experiments are available at:

http://fox.rwu.edu/~rutherfo/supplements/Pseudoproxy05/

2. Methods

A. Composite-Plus-Scale Method ("CPS")

Our implementation of the 'CPS' method is similar to that used in past studies (e.g. Bradley and

Jones, 1993, Jones et al., 1998, Crowley and Lowery, 2000; Briffa et al., 2001; Esper et al.,

2002;  MJ03) wherein roughly a dozen proxy series, each of which is assumed to represent a

linear combination of local temperature variations and an additive 'noise' component, are

composited (typically at decadal resolution-see, e.g., Bradley and Jones, 1993; Crowley and

Lowery, 2000; Esper et al., 2002; MJ03) and scaled against an instrumental hemispheric mean

temperature series during an overlapping 'calibration' interval to form a hemispheric

reconstruction. The rationale for such an approach is that the surface temperature field over, e.g.,

the Northern Hemisphere only possesses a dozen or less spatial degrees of freedom on

interannual and longer timescales (e.g. Briffa and Jones, 1993).  In the CPS method, the

composite is typically scaled (e.g., Bradley and Jones, 1993; Crowley and Lowery, 2000; Esper

et al., 2002; MJ03) to have the same variance as the target instrumental series. Such scaling is

based on the assumption that the contributing proxy series can be treated as actual local
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temperature indicators, rather than simply a set of statistical predictors. The 'CPS' approach thus

differs from a multivariate regression approach wherein the reconstruction is guaranteed to have

less variance than the target series over the calibration interval.

We formed three different networks ("A", "B", and "C") of a dozen randomly selected model

gridboxes (restricted to the region of the Northern Hemisphere and tropics that is sampled by the

20th century instrumental record to simulate the coverage of real-world proxy networks--see

Figure 1a).  Pseudoproxy time series (see Supplementary Figure 1) were formed through

summing each gridbox annual mean temperature series with a realization of white noise (a

reasonable assumption for representing observational error--the effects of the noise 'color' were

investigated by Mann and Rutherford, 2002), allowing for various relative amplitudes of noise

variance [expressed as a signal-to-noise ratio ('SNR') of amplitudes--see Mann and Rutherford

(2002)]. Experiments with SNR=1.0 were performed for all three networks. For the first network

("A"), experiments were performed for four different values of SNR: 0.25, 0.5, 1.0 and ∞ (i.e.,

no added noise).

Following the typical CPS procedure (e.g. Bradley and Jones, 1993; Crowley and Lowery, 2000;

Esper et al., 2002; MJ03), each pseudoproxy series was decadally smoothed (using a 10 point

Butterworth filter with optimal boundary constraints as described by Mann, 2004) and

standardized. A weighted composite was formed based alternatively on (a) a simple areal

weighting (i.e., weighting by cosine of the latitude of the gridbox), and (b) areal weighting

coupled with an additional weighting by the calibration period correlation with the corresponding

observed gridbox temperature series (as in MJ03). The composite was then scaled to have the

same mean and decadal standard deviation as the actual NH series over a modern calibration
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interval (we used both 1856-1980 and 1900-1980 calibration intervals, representative of the

varying calibration intervals that have been used in actual reconstructions).

We calculated the 'Reduction of Error' ('RE') reconstruction skill diagnostics during both the

calibration period and an independent, pre-calibration 'verification' period (see e.g. Cook et al.,

1994; Rutherford et al., 2005, and references therein).  We also calculated alternative Coefficient

of Efficiency ('CE') and squared Pearson correlation (r2) verification skill metrics. While RE is

considered a superior metric for evaluating statistical reconstruction skill (see Rutherford et al,

2005),  Verification RE values tend to be enhanced in these particular experiments due to the

unusually large pre-20th century mean temperature changes which occur (and are captured by)

the reconstructions.  These mean changes are larger than those observed in the actual

instrumental data.  We therefore also used a highly conservative estimate of unresolved variance

provided by 1-r2 (along with than the more conventional 1-RE) to estimate statistical

uncertainties as conservatively as possible.  For experiments using a 1900-1980 calibration

interval, an 1855-1899 verification interval was used, to mimic the verification intervals that

have been used in previous studies (Mann et al. 1998; Mann and Rutherford, 2002; Rutherford et

al., 2003; 2005). For experiments using an 1856-1980 calibration interval, the full available 850-

1855 period was instead used for verification.  Statistical significance of resolved variance

metrics were calculated through Monte Carlo simulations based on the null hypothesis of (order

one autoregressive) AR(1) red noise with the serial correlation and variance of the actual model

NH series over the calibration period.

B. Climate Field Reconstruction Method ("CFR")

Our implementation of the CFR approach makes use of the Regularized Expectation

Maximization ('RegEM') method of Schneider (2001) which has been applied to CFR in several
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recent studies (Mann and Rutherford, 2002; Rutherford et al., 2003; Zhang et al., 2004;

Rutherford et al., 2005). The method is similar to PCA-based approaches (e.g. MBH98; Evans et

al., 2002; Luterbacher et al., 2002) but employs an iterative estimate of data covariances to make

more complete use of the available information (see Schneider, 2001). As in Rutherford et al.

(2005), we tested: (i) straight application of RegEM, (ii) a 'hybrid frequency-domain calibration'

approach that employs separate calibrations of high (shorter than 20 year period) and low

frequency (longer than 20 year period) components of the annual mean data that are

subsequently composited to form a single reconstruction, and (iii) a 'stepwise' version of RegEM

in which the reconstruction itself is increasingly used in calibrating successively older segments

['MATLAB' source codes available at website given above]. As in Rutherford et al. (2005), the

reconstruction was initialized with the mean of all of the predictors (i.e., the pseudoproxies) over

the pre-calibration interval. This choice speeds convergence, but the final reconstruction is

insensitive, as it must be to be reliable, to the initial condition (see Supplementary Table and

Supplementary Figure 2).

The RegEM method has been shown to yield a very similar hemispheric mean temperature

reconstruction to that of MBH98 when applied to the same network of multiple proxy indicators

(Rutherford et al., 2005) (Figure 2), suggesting that conclusions regarding real-world proxy

reconstructions are not likely to be dependent upon the precise method of CFR used. Similar

experiments to those performed here, but using the MBH98 PCA-based approach, are underway.

Following Zorita et al. (2003), VS04, and Rutherford et al. (2005), our CFR analyses make use

annual mean data, and the precise MBH98 multiproxy network locations. The actual MBH98

proxy network becomes sparser back in time. Previous studies (Mann and Rutherford, 2002;

Rutherford et al., 2003; Zorita et al., 2003) have used pseudoproxy experiments to investigate the

influence of increasing sample sparseness on CFR results.  Here, as in VS04, we have for
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simplicity used a distribution of sites corresponding to the full network (all proxies available

back through the early 19th century) used by MBH98.

Using the method described above, we formed pseudoproxy indicators at the 104 unique

locations (Figure 1b) used by MBH98.  While the pseudoproxy indicators were, as above,

computed from the surface temperature field, it should be noted that with CFR methods, the

proxy data need not reflect local surface temperatures; any indicator that is statistically related to

one or more large-scale patterns expressed in the surface temperature field (e.g. a coral record

reflecting salinity changes in the western tropical Pacific related to the El Nino/Southern

Oscillation) can be used in a CFR reconstruction of the surface temperature field (see e.g. Mann

et al, 1998; Rutherford et al, 2005 ). We used the same four values, SNR=0.25, 0.5, 1.0 and ∞

and same two alternative calibration intervals described above. The statistical verification

procedure, and uncertainty estimation procedures described above were applied to the

(decadally-smoothed) CFR results. It should be noted that, in contrast with the CPS method,

traditional calibration metrics of resolved variance are not available in RegEM. Statistical

significance of verification skill metrics was estimated using the same Monte Carlo significance

estimation procedure described above.

3. Results

A. Composite-Plus-Scale Method ("CPS")

In the CPS experiments, results for SNR=1.0 most closely resembled those obtained for actual

proxy reconstructions (Mann et al., 1998; Rutherford et al., 2005; Mann and Jones, 2003), with

respect to the NH mean variance resolved (see Table 1) during the calibration (roughly 70%) and

verification periods (roughly 45-70%). By contrast, lower SNR values (i.e., 0.25) yielded

significantly lower estimates of reconstruction skill in calibration (<50%) and verification
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(<20%) than indicated for actual reconstructions. For SNR=1.0, the reconstructions (Figure 3a)

are observed to be relatively insensitive to whether the short (1900-1980) or long (1856-1980)

calibration interval is used, the specific locations of the 12 pseudoproxy sites (comparisons of the

results for the 3 different networks are provided in the Table 1 and Figure 4), or which of the two

weighting schemes was used in the composite (see Table 1). It is noteworthy that the

reconstructions faithfully capture the large, short-term coolings associated with large explosive

volcanic forcing events that take place (see Ammann et al., 2005a) during e.g. the late 12th

century, mid 13th century, mid 15th century, and early 19th century.  At lower SNR (0.25 or

0.5), use of a combined 19th/20th century calibration interval (as in Mann and Jones, 2003)

appears to yield a more reliable reconstruction than a 20th century only interval (as in Bradley

and Jones, 1993; Jones et al., 1998, Crowley and Lowery, 2000). This finding appears consistent

with other studies of the sensitivity of the CPS method to the length of the calibration interval

(Esper et al, 2005).  For SNR=1.0, a modest underestimate of long-term changes in mean is

evident, though this bias is well within the estimated uncertainties. This result is consistent with

the suggestion that simple CPS, or regression-based methods employing a short calibration

period are likely to underestimate long-term variability (Osborn and Briffa, 2004) [It should be

noted that this argument does not apply to CFR methods]. Only for the lowest SNR ratio (0.25)

does this underestimate become significant (Figure 3b).

A variant on the CPS approach was recently described by Moberg et al. (2005--henceforth

"M05").  In this alternative approach, proxy series are first standardized by their nominal

standard deviations, and separate composites are formed in both low-frequency (>80 year) and

high frequency (<80 year) bands, making use in each case of only multidecadal/centennial

resolution and only annual resolution (tree-ring), proxy indicators respectively. The two

composites are then simply added, and the combined result scaled against the modern
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instrumental record.  M05 demonstrated that application of such an approach to a set of long-

term proxy data appears to indicate greater low-frequency variability than is evident in other (see

e.g. Fig. 5 of Jones and Mann, 2004) existing reconstructions. We have used the same

pseudoproxy networks employed in our tests of the conventional CPS method described above.

to investigate whether this greater low-frequency variability is likely to be real, or spurious, in

nature.

Since the low-resolution records represent effectively low-passed versions of  whatever

underlying annual climate process they represent, they have less broadband variance than would

be present in a corresponding annually-resolved record.  Thus, when both the high-resolution and

low-resolution indicators are each separately standardized by their nominal standard deviations,

the variance in the  low-resolution records is effectively inflated relative to that of the high-

resolution records. Since the sum of the separate high-frequency and low-frequency composites

is scaled to have the same variance as the instrumental record, this means that the low-frequency

variance is inflated, and the high-frequency variance deflated, relative to the instrumental

temperature record. In other words, the low-frequency variability in the reconstruction is likely

to be artificially inflated relative to the true low-frequency temperature variations.

To test this, we simulated the M05 procedure for the case SNR=0.5 (network "A") described

above.  We first split the set (see Figure 1) into 1/3 (4 proxies) for the high-frequency (<80 year

period) composite, and 2/3 (8 proxies) for the low-frequency (>80 year period) composite and

additionally smoothed the 8 low-frequency proxies using an 80 year low-pass filter (Mann, 2004)

to simulate the low-resolution character of the various proxies (e.g. sediment cores) used by M04

in their low-frequency composite. We then standardized all series by their nominal standard

deviation, and composited the high-frequency and low-frequency components separately.
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Finally, we added the high- and low-frequency composites, and scaled the resulting series to

have same mean and decadal variance as the model's actual NH series over the 1856-1980

interval. Figure 5 shows the resulting reconstruction along with the reconstruction resulting from

application of the conventional CPS procedure (i.e., as shown in Figure 3b).  While the

conventional CPS reconstruction modestly underestimates the true variance as discussed earlier,

the resulting reconstruction nonetheless remains well within estimated uncertainties of the true

series.  In contrast, the emulated M05 reconstruction lies near or outside of the 95% confidence

interval over too wide a region to be considered consistent with the actual model climate, and

generally overestimates the true low-frequency variability. The existence of such an

overestimation bias when using the M05 scheme appears to depend on the SNR value, the

particular random network used, and which subsets of indicators are reserved for the two

different frequency bands. However, the fact that the scheme significantly overestimates the true

low-frequency variability in some situations indicates that it cannot be trusted to yield a reliable

reconstruction when applied to real-world proxies.  Additional experiments (Supplementary

Figure 3) indicate that adjustment of the M05 procedure to additionally weight proxies by the

calibration period correlation with the corresponding actual gridbox temperature series (as used

in earlier experiments described above, and as used in MJ03) can potentially ameliorate the

overestimation bias.

B. Climate Field Reconstruction Method ("CFR")

We make use of the hybrid frequency-domain version of the RegEM algorithm in the CFR

experiments described below. Other versions of the RegEM algorithm (straight RegEM and

stepwise RegEM) yielded similar results (Supplementary Table). As with the CPS experiments,

SNR=1.0 (Figure 6a) yielded a similar verification resolved variance (60-80% depending on
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calibration period used) to that observed for actual proxy reconstructions. As in the CPS

experiments, there is a slight sensitivity to which (short or long) calibration period is used, with a

long calibration period (as used by Rutherford et al., 2005) yielding a moderately more skillful

reconstruction (Table 1).

There is a surprising insensitivity, however, of the low-frequency features of the reconstruction

to the precise value of  SNR in the CFR experiments; for no SNR value was there any evidence

of a systematic underestimate of low-frequency variability (Figure 6b), a result that conflicts

dramatically with the claims of von Storch et al. (2004).  As discussed above, we suspect that the

reason for the difference lies, at least partly, in certain unrealistic features of the GKSS

simulation used by VS04. The possible additional impacts of the use of differing CFR methods

are also currently being explored.

The CFR approach does appear to systematically underestimate the amplitude of the larger

volcanic cooling events, a finding that is unsurprising. The climatic response to volcanic forcing

represents a particular challenge for the CFR method, since only a small number of moderate

volcanic forcing events are contained within the calibration interval, and these events are quite

small in comparison with the much larger events present in the pre-calibration interval. The

spatial patterns of response to volcanic forcing are consequently not well captured in the

calibration period. CFR approaches have been shown to yield a systematic underestimate of

variance under precisely such circumstances (Rutherford et al., 2003).  This bias, as expected,

becomes more prominent at lower values of SNR.

4. Conclusions
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We find no evidence for the suggestion (e.g. VS04) that real world proxy-based temperature

reconstructions are likely to suffer from any systematic underestimate of low-frequency

variability.  Our findings suggest that both standard methods that have been used in proxy-based

reconstruction (CPS and CFR) are likely to provide a faithful estimate of actual long-term

hemispheric temperature histories, within estimated uncertainties. On the other hand, apparent

complementary strengths and weaknesses emerge in comparing the two approaches. The CFR

approach systematically underestimates high-frequency changes associated with the cooling

response to explosive volcanism, but shows no evidence of any systematic bias in the

reconstructed low-frequency variability. The CPS approach, by contrast, shows no tendency to

underestimate volcanic cooling, but does exhibit a tendency to moderately underestimate long-

term variations in the mean, although this becomes significant only at signal-to-noise ratios

lower than is inferred for real-world proxy data.  We encourage similar future experiments using

coupled ocean-atmosphere models and appropriate experimental designs for simulating proxy-

based climate reconstruction approaches.
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Figure Captions

Figure 1.  Spatial distributions of (a) each of the 3 random networks of 12 pseudoproxies used in

the various CPS experiments ("A", "B", and "C") and (b) the 104 pseudoproxies used in the CFR

experiments. For CPS experiment "A", subsets of pseudoproxies used in the separate low-

frequency and high-frequency composites for the M05 emulation experiment are indicated.

Figure 2. Comparison between annual mean NH reconstructions using the MBH98 multiproxy

dataset and (i)  PCA-based method (blue) of MBH98, and (ii) hybrid frequency-domain RegEM

method (green) of Rutherford et al (2005).  The two reconstructions share 74% of their variance

during the 1400-1855 overlap period (RE =0.74 with the MBH98 reconstruction as the reference

series, and using the 1900-1971 overlap in calibration periods as the reference interval).

Instrumental annual mean NH series of Jones et al. (1998) is shown for comparison (red), along

with the two standard error uncertainty intervals for both reconstructions.

Figure 3.  "Pseudoproxy" reconstruction of decadal mean Northern Hemisphere mean

temperature based on CPS approach. We show results using (a) the SNR value (1.0) most

consistent with actual proxy networks (results for network 'A' shown) and two alternative

calibration intervals (1856-1980 and 1900-1980) and (b) all 4 SNR values and an 1856-1980

calibration interval.  Statistical uncertainties (shading of two standard error region) for SNR=1.0,

and actual model decadal mean NH series are also shown.

Figure 4.  Comparison  of  CPS reconstructions for SNR=1.0 (1856-1980 calibration period) for

using the three different random networks A, B, and C show in Figure 1.
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Figure 5.  Comparison of reconstructions using conventional CPS approach (blue) and our

emulation of M04 procedure (green), based on network used in CPS experiment "A" with

SNR=0.5.  Shown for comparison is the true model NH history (red). Thick curves highlight the

low-frequency (>80 year timescale) variations, based on lowpass filtering at f=0.025 cycle/year

using the method described by Mann (2004). Shading indicates two standard error uncertainties

for the >80 year timescale variations in the two reconstructions.

Figure 6.  "Pseudoproxy" reconstruction of Northern Hemisphere mean temperature based on

CFR approach compared with model NH series (decadally-smoothed data are shown) for (a)

SNR=1.0 using two alternative calibration intervals (1856-1980 and 1900-1980). Uncertainties

(yellow shading indicates two standard error region) are shown for the latter of the two

calibration intervals, based on 1856-1899 verification period residuals. (b) all 4 SNR values and

an 1856-1980 calibration interval.  Statistical uncertainties (shading of two standard error region)

are shown for lowest SNR value (0.25) based on pre-1856 verification residuals.
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Table 1.  Comparisons of Calibration and Verification Reconstruction Skill for Both "CPS" and
"CFR" experiments using  "Pseudoproxy" networks of varying signal-to-noise (SNR) ratio,
spatial distribution, calibration interval, and (in CPS case), weighting scheme.
Type Network SNR Weighting Calibration

Period
Calibration

stats
Verification stats

RE RE CE r2

CPS 12 prox (A) ∞ Unif 1856-1980 0.74 0.93 0.63 0.77
CPS 12 prox (A) ∞ Unif 1900-1980 0.77 0.841 -0.091 0.641

CPS 12 prox (A) 1.0 Unif 1856-1980 0.73 0.89 0.45 0.68
CPS 12 prox (A) 1.0 Unif 1900-1980 0.72 0.791 -0.431 0.431

CPS 12 prox (A) 1.0 Corr 1900-1980 0.71 0.781 -0.481 0.441

CPS 12 prox (A) 1.0 Corr 1856-1980 0.72 0.88 0.42 0.67
CPS 12 prox (B) 1.0 Corr 1856-1980 0.74 0.91 0.58 0.67
CPS 12 prox (C) 1.0 Corr 1856-1980 0.69 0.87 0.38 0.58
CPS 12 prox (A) 0.5 Corr 1900-1980 0.34 0.46 1 -2.62 0.381

CPS 12 prox (A) 0.5 Corr 1856-1980 0.42 0.83 0.17 0.58
CPS 12 prox (A) 0.25 Corr 1900-1980 0.52 -0.111 -6.541 0.161

CPS 12 prox (A) 0.25 Corr 1856-1980 0.30 0.58 -1.04 0.20

CFR “MBH98” ∞ NA 1856-1980 NA 0.97 0.83 0.85
CFR “MBH98” 1.0 NA 1900-1980 NA 0.931 0.551 0.621

CFR “MBH98” 1.0 NA 1856-1980 NA 0.96 0.80 0.83
CFR “MBH98” 0.5 NA 1856-1980 NA 0.94 0.72 0.74
CFR “MBH98” 0.25 NA 1856-1980 NA 0.87 0.39 0.38

1. An 1856-1899 verification interval was used in this experiment (an AD 850-1855 verification interval was used
for experiments employing an 1856-1980 calibration interval).

 Statistical significance of verification skill metrics from Monte Carlo simulations exceeds
p=0.05 level unless otherwise indicated (italicized: significant at 0.10>p>0.05; boldface: not
significant at p=0.10 level).
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FIGURE 6


